STOCHASTIC INTEGRATION IN FOCK SPACE

V. S. SUNDER

In this paper, using purely Hilbert space-theoretic methods, an analogue of the Itô integral is constructed in the symmetric Fock space of a direct integral \mathfrak{F} of Hilbert spaces over the real line. The classical Itô integral is the special case when $\mathfrak{F} = L^2[0,\infty)$. An explicit formula is obtained for the projection onto the space of 'non-anticipating functionals', which is then used to prove that simple non-anticipating functionals are dense in the space of all non-anticipating functionals. After defining the analogue of the Itô integral, its isometric nature is established. Finally, the range of this 'integral' is identified; this last result is essentially the Kunita-Watanabe theorem on square-integrable martingales.

Preliminaries. (a) Symmetric Fock space: If \mathfrak{F} is a (complex) Hilbert space, the symbol $\mathfrak{F}^{(s)n}$ will denote the Hilbert space of symmetric tensors of rank *n*; alternatively, $\mathfrak{F}^{(s)n}$ is the closed subspace of $\otimes^n \mathfrak{F}$ spanned by $\{x \otimes \cdots \otimes x: x \in \mathfrak{F}\}$. (In the sequel, the symbol sp S will denote the closed subspace spanned by the set S of vectors.) By convention, $\mathfrak{F}^{(s)0} = \mathbb{C}$. We shall also write $\otimes^n x$ for $x \otimes \cdots \otimes x$, with the convention that $\otimes^0 x = 1$.

The symmetric Fock space over \mathfrak{H} , is by definition, the Hilbert direct sum

$$\Gamma(\mathfrak{H}) = \bigoplus_{n=0}^{\infty} \mathfrak{H}^{(s)n}.$$

If $x \in \mathfrak{H}$, then $\Gamma(x)$ will denote the 'exponential' vector in $\Gamma(\mathfrak{H})$ defined by

$$\Gamma(x) = \left(1, x, \frac{\otimes^2 x}{\sqrt{2!}}, \dots, \frac{\otimes^n x}{\sqrt{n!}}, \dots\right).$$

The following are easily verified:

(i)
$$\Gamma(\mathfrak{H}) = \operatorname{sp}\{\Gamma(x) \colon x \in \mathfrak{H}\};\$$

(1) and

(ii) $\langle \Gamma(x), \Gamma(y) \rangle = \exp\langle x, y \rangle, \quad x, y \in \mathfrak{S}.$