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FIXED POINT THEOREMS FOR SOME
DISCONTINUOUS OPERATORS

LUCIMAR NOVA G.

The purpose of this paper is to show the existence of fixed points
for operators T defined on a subset AT of a Banach space X and
belonging to a class that the author calls D(a,b) with 0 < a, b < 1.

1. Introduction. Let T be a mapping of a set K into itself. An

immediate question is whether some point is mapped onto itself; that is,

does the equation

(1) Tx = x

have a solution? If so, x is called a fixed point of T. This question

generates a theory which began in 1912 with the work of L. E. J. Brouwer,

who proved that any continuous mapping T of an «-ball into itself has a

fixed point, and was followed in 1922 by S. Banach's Contraction Princi-

ple, which states that any mapping T of a complete metric space X into

itself that satisfies, for some 0 < k < 1, the inequality

(2) d(Tx,Ty)<kd(x,y)

for all x and y in X, has a unique fixed point. Here d denotes the metric

on X. J. Schauder [13], Tychonoff [16]. S. Lefschetz [10], F. Browder [2],

W. A. Kirk [7], and many others have added to and generalized these

basic results.

In 1969 and 1971, R. Kannan [5], [6], proved some fixed point

theorems for operators T mapping a Banach space X into itself which,

instead of the contraction property in (2), satisfy the condition:

(3) \\Tx - Ty\\< a[\\x - Tx\\ + \\y - Ty\\],

for all x, y in X; where 0 < a < 1/2. G. Hardy and T. Rogers [4]

generalized this result to continuous mappings T of a complete metric

space X into itself that satisfy:

(4) d(Tx, Ty) < aιd{x, y) + a2d(x, Tx) + a3d(y, Ty)

+ a4d(x, Ty) + a5d(y, Tx),

for all x and y in X, where at > 0 and ax + a2 + a3 4- a4 + a5 < 1. K.

Goebel, W. A. Kirk, and T. N. Shimi [3], extended the last result to
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