DERIVATIONS WITH INVERTIBLE VALUES IN RINGS WITH INVOLUTION

A. Giambruno, P. Misso and C. Polcino Milies

Let R be a semiprime 2 -torsion free ring with involution * and let $S=\left\{x \in R \mid x=x^{*}\right\}$ be the set of symmetric elements. We prove that if R has a derivation d, non-zero on S, such that for all $s \in S$ either $d(s)=0$ or $d(s)$ is invertible, then R must be one of the following: (1) a division ring, (2) 2×2 matrices over a division ring, (3) the direct sum of a division ring and its opposite with exchange involution, (4) the direct sum of 2×2 matrices over a division ring and its opposite with exchange involution, (5) 4×4 matrices over a field with symplectic involution.

Recently Bergen, Herstein and Lanski studied the structure of a ring R with a derivation $d \neq 0$ such that, for each $x \in R, d(x)=0$ or $d(x)$ is invertible. They proved that, except for a special case which occurs when $2 R=0$, such a ring must be either a division ring D or the ring D_{2} of 2×2 matrices over a division ring.

In this paper we address ourselves to a similar problem in the setting of rings with involution, namely: let R be a 2 -torsion free semiprime ring with involution and let S be the set of symmetric elements. If $d \neq 0$ is a derivation of R such that the non-zero elements of $d(S)$ are invertible, what can we conclude about R ?

We shall prove that R must be rather special. In fact we shall show the following:

Theorem. Let R be a 2 -torsion free semiprime ring with involution. Let d be a derivation of R such that $d(S) \neq 0$ and the non-zero elements of $d(S)$ are invertible in R. Then R is either:

1. a division ring D, or
2. D_{2}, the ring of 2×2 matrices over D, or
3. $D \oplus D^{\text {op }}$, the direct sum of a division ring and its opposite relative to the exchange involution, or
4. $D_{2} \oplus D_{2}^{\text {op }}$ with the exchange involution, or
5. F_{4}, the ring of 4×4 matrices over a field F with symplectic involution.

In case $R=F_{4}$ with * symplectic we shall prove that d is inner. As Herstein has pointed out, an easy example of such a ring is given by

