ON FUNCTIONS AND STRATIFIABLE μ -SPACES

TAKEMI MIZOKAMI

It is shown that a space X is a stratifiable μ -space if and only if X has a topology induced by the collection $\bigcup_{n=1}^{\infty} \Phi_n$ of [0,1]-valued continuous functions of X such that each Φ_n satisfies the conditions (α) , (β) and (γ) stated below.

1. Introduction. Throughout, all spaces are assumed to be regular Hausdorff. N always denotes the positive integers. For a space X, C(X, I) denotes the collection of all continuous functions $f: X \to I =$ [0, 1]. For $f \in C(X, I)$ we denote by $\cos f$ the cozero set of f in X. We are assumed to be familiar with the class of stratifiable spaces in the sense of [1]. For a stratifiable space X, every closed subset F of X has a stratification $\{O_n(F): n \in N\}$ in X. As is well-known, every stratifiable space X is monotonically normal, that is, X has a monotonically normal operator D(M, N) for each disjoint pair (M, N) of closed subsets of X.

J. Guthrie and M. Henry characterized metrizable spaces X in terms of collections of continuous functions with continuous sup and inf as follows: A space X is metrizable if and only if X has the weak topology induced by a σ -relatively complete collection $\Phi \subset C(X, I)$, that is, $\Phi = \bigcup_{n=1}^{\infty} \Phi_n$, where for each n, each subcollection of Φ_n has both continuous sup and inf, [3]. On the other hand, C. R. Borges and G. Gruenhage obtained the characterization of stratifiable spaces as follows: A space X is stratifiable if and only if for each open set U of X there exists $f_U \in C(X, I)$ such that $\cos f_U = U$ and such that for each family \mathscr{U} of open subsets of X, $\sup\{f_U: U \in \mathscr{U}\} \in C(X, I)$, [2, Theorem 2.1]. In the discussion below, we also give a characterization of the class of stratifiable μ -spaces in terms of collections of continuous functions with continuous sups with an additional condition. This is the main purpose of this paper.

In an earlier paper [6], the author introduced the notion of *M*-structures and studied the class \mathscr{M} of all stratifiable spaces having an *M*-structure. This class \mathscr{M} is shown to coincide with that of stratifiable μ -spaces, [5]. The kernel of *M*-structures is the term " \mathscr{H} -preserving in both sides". Therefore, first we state the definition. For the definition of *M*-structures, we refer the reader to [6].

Let \mathscr{U}, \mathscr{H} be families of subsets of a space X. Then we call that \mathscr{U} is *inside* \mathscr{H} -preserving at a point $p \in X$ if for each $\mathscr{U}_0 \subset \mathscr{U}, p \in \cap \mathscr{U}_0$