LIFTING UNITS IN SELF-INJECTIVE RINGS AND AN INDEX THEORY FOR RICKART *C*-*ALGEBRAS

PERE MENAL AND JAUME MONCASI

In this paper we study the following question: If R is a right self-injective ring and I an ideal of R, when can the units of R/I be lifted to units of R?

We answer this question in terms of $K_0(I)$. For a purely infinite regular right self-injective ring R we obtain an isomorphism between $K_1(R/I)$ and $K_0(I)$ which can be viewed as an analogue of the index map for Fredholm operators.

By giving a purely algebraic description of the connecting map $K_1(A/I) \rightarrow K_0(I)$ in the case where A is a Rickart C*-algebra, we are able to extend the classical index theory to Rickart C*-algebras in a way which also includes Breuer's theory for W*-algebras.

0. Preliminary results. Throughout this paper R will denote an associative ring with 1. By a *rng* we mean a ring which does not necessarily have a 1.

We write $M_n(R)$ for the ring of all $n \times n$ matrices over R, and $\operatorname{GL}_n(R)$ for the group of units of $M_n(R)$, though we shall write U(R) rather than $\operatorname{GL}_1(R)$. For $1 \leq i$, $j \leq n$ let $e_{ij} \in M_n(R)$ be the usual matrix units. Define $E_n(R)$ to be the subgroup of $\operatorname{GL}_n(R)$ generated by all the matrices of the form $1 + re_{ij}$, $r \in R$, $i \neq j$; and $GE_n(R)$ to be the subgroup of $\operatorname{GL}_n(R)$ to be the subgroup of $\operatorname{GL}_n(R)$ to be the subgroup of $\operatorname{GL}_n(R)$ generated by $E_n(R)$ together with the subgroup $D_n(R)$ of all invertible diagonal matrices. If $GE_n(R) = \operatorname{GL}_n(R)$, then we say that R is a GE_n -ring; if R is a GE_n -ring for all n > 1 then R is said to be a GE-ring.

If R is a GE_n -ring, then $E_n(R)$ is a normal subgroup of $GL_n(R)$ and hence $GL_n(R) = D_n(R)E_n(R)$.

Let GL(R) denote the direct limit of the directed system

 $U(R) \rightarrow \operatorname{GL}_2(R) \rightarrow \operatorname{GL}_3(R) \rightarrow \cdots$

where each $a \in \operatorname{GL}_n(R)$ is mapped to

 $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$