EXTENSIONS OF REPRESENTATIONS OF LIE ALGEBRAS

John Gerard Ryan

Abstract

Let $\phi: L_{1} \rightarrow L_{2}$ be a morphism of finite-dimensional Lie algebras over a field of characteristic zero. Our problem is this: given a finite-dimensional L_{1}-module, V say, when does V embed as a sub L_{1}-module of some finite-dimensional L_{2}-module? The problem clearly reduces to the case in which ϕ is injective. We provide here (Thm. 3.6) a solution in two separate cases: (i) under the assumption that ϕ maps the radical of L_{1} into the radical of L_{2}, or (ii) under the assumption that L_{1} is its own commutator ideal.

0. Introduction. A theorem of Bialynicki-Birula, Hochschild, and Mostow ([1, Thm. 1]) gives conditions for a finite-dimensional module for a subgroup of an algebraic group to embed as a submodule into a finite-dimensional module for the whole group. It is with a modification of this result that we obtain criteria for modules of Lie algebras.

Throughout this paper, k will denote a field of characteristic zero, and K will be an algebraic closure of k. For a Lie algebra L over $k, U(L)$ will denote the universal enveloping algebra of $L ; H(L)$ will denote the Hopf algebra of representative functions associated with L. All of our Lie algebras, modules, and representations are taken to be finite-dimensional unless otherwise specified. We will regard a module for a Lie algebra L as also a left $U(L)$-module or as a right $H(L)$-comodule, and vice versa.

The author wishes to thank Professor G. Hochschild for his generous and invaluable assistance in the suggestion of the topic and in the writing of the doctoral dissertation on which this paper is based.

1. Reduction of the problem to representative functions.

Definition. Let $\phi: H_{1} \rightarrow H_{2}$ be a morphism of coalgebras over $k . \phi$ induces an H_{2}-comodule structure on any H_{1}-comodule $\psi: V \rightarrow V \otimes H_{1}$ by following up ψ with $(i \otimes \phi)$, where i is the identity map. We say that an H_{2}-comodule $\xi: U \rightarrow U \otimes H_{2}$ is extendable to H_{1} if there is an H_{1}-comodule $\psi: V \rightarrow V \otimes H_{1}$ and a linear injection $j: U \hookrightarrow V$ such that $(j \otimes i) \circ \xi=(i \otimes \phi) \circ \psi \circ j$.

