# ROTATION NUMBERS FOR AUTOMORPHISMS OF C* ALGEBRAS 


#### Abstract

Ruy Exel

Poincare's notion of rotation number for a homeomorphism of the circle is generalized to a large class of automorphisms of $C^{*}$ algebras. This is accomplished by the introduction of a $C^{*}$ algebraic notion of determinant. A formula is obtained for the range of a trace on the $K_{0}$ group of a cross product by $Z$ in terms of the rotation number of the automorphism involved.


Introduction ..... 31
I Winding Numbers ..... 35
II Determinants ..... 40
III Invariant Determinants ..... 45
IV Rotation Numbers ..... 49
V Crossed Products ..... 52
VI Commutative $C^{*}$ Algebras ..... 63
VII Almost Periodic Automorphisms ..... 69
VIII Automorphisms of Connected Groups ..... 76
IX Translations and Affine Homeomorphisms of Connected Groups ..... 80
Appendix A ..... 85
Appendix B ..... 87
Bibliography ..... 88
Introduction. In [16] Poincaré introduced the notion of rotation number for homeomorphisms of the circle. The idea is to associate to any orientation-preserving homeomorphism of the circle a complex number of absolute value one which, in some sense, represents the average amount by which each individual point in the circle is "rotated" by the given homeomorphism. If $R_{\theta}$ denotes the rotation by the angle $\theta$ on the circle, that is, the transformation $z \rightarrow e^{i \theta} z$, we may compute its rotation number which, not surprisingly, turns out to be equal to $e^{i \theta}$.
Suppose we replace the circle by the 2 -torus $T^{2}$ (viewed as the cartesian product of two circles) and let $R_{\eta, \theta}$ be the homeomorphism of $T^{2}$ which rotates the first and second circle coordinates by different angles $\eta$ and $\theta$. It seems plausible to assert that $R_{\eta, \theta}$ admits two rotation numbers, namely $e^{i \eta}$ and $e^{i \theta}$.

