THE PICARD NUMBERS OF ELLIPTIC SURFACES WITH MANY SYMMETRIES

Peter F. Stiller

Abstract

In this paper we compute the Picard numbers of several families of elliptic surfaces (see Example 1, $\S 5$ for a typical result.) This is equivalent to the difficult problem of determining the rank of the Mordell-Weil group of certain elliptic curves over function fields. Our method is to study the action induced by automorphisms of these surfaces on a relevant part of the cohomology. The cohomology classes are represented by certain inhomogeneous differential equations-our so-called inhomogeneous de Rham cohomology-where the effect of the action is easily understood.

1. An overview. A complex surface is said to be elliptic if it can be mapped onto a curve in such a way that the general fiber is a curve of genus one (see Kodaira [9] and [10]). In this paper we focus on computing the Picard number of certain surfaces of this type. Recall that the Picard number is defined to be the rank of the Néron-Severi group of the surface -that is, the group of divisors modulo algebraic equivalence-which is known to be a finitely generated abelian group.

Let E be an elliptic surface and denote by $\pi: E \rightarrow X$ a projection of E onto a curve X with generic fiber $E^{\text {gen }}$ a curve of genus one over the function field $K(X)$ of X. We shall assume that $\pi: E \rightarrow X$ has a section $o: X \rightarrow E, \pi \circ \circ=1_{X}$, that the J-invariants of the fibers are not constant, and that there are no exceptional curves of the first kind in the fibers. Let $S \subset X$ be the finite set of points at which the family E / X degeneratesthat is, where $\pi^{-1}(s)$ fails to be an elliptic curve. (Note that there are no multiple fibers.) The degenerate fiber types are classified (see Kodaira [9]) and we shall label the types following Kodaira. We denote by $\operatorname{NS}(E)$ the Néron-Severi group of E and by ρ_{E} its rank which is called the Picard number of E.

The group $\mathrm{NS}(E)$ is naturally a subgroup of $H^{2}(E, \mathbf{Z})$-both are torsion free in our case (see Cox and Zucker [1])-and includes in $H^{1}\left(E, \Omega_{E}^{1}\right)$ the (1,1) part of the Hodge decomposition of the cohomology,

