A CHARACTERIZATION THEOREM FOR COMPACT UNIONS OF TWO STARSHAPED SETS IN R^{3}

Marilyn Breen

Abstract

Set S in R^{d} has property P_{k} if and only if S is a finite union of d-polytopes and for every finite set F in bdry S there exist points c_{1}, \ldots, c_{k} (depending on F) such that each point of F is clearly visible via S from at least one $c_{i}, 1 \leq i \leq k$. The following results are established. (1) Let $S \subseteq R^{3}$. If S satisfies property P_{2}, then S is a union of two starshaped sets. (2) Let $S \subseteq R^{d}, d \geq 3$. If S is a compact union of k starshaped sets, then there exists a sequence $\left\{S_{l}\right\}$ converging to S (relative to the Hausdorff metric) such that each set S_{j} satisfies property P_{k}.

When $d=3$ and $k=2$, the converse of (2) above holds as well, yielding a characterization theorem for compact unions of two starshaped sets in R^{3}.

1. Introduction. We begin with some definitions. Let S be a subset of R^{d}. Hyperplane H is said to support S locally at boundary point s of S if and only if $s \in H$ and there is some neighborhood N of s such that $N \cap S$ lies in one of the closed halfspaces determined by H. Point s in S is called a point of local convexity of S if and only if there is some neighborhood N of s such that $N \cap S$ is convex. If S fails to be locally convex at q in S, then q is called a point of local nonconvexity (lnc point) of S. For points x and y in S, we say x sees y via $S(x$ is visible from y via S) if and only if the segment $[x, y]$ lies in S. Similarly, x is clearly visible from y via S if and only if there is some neighborhood N of x such that y sees via S each point of $N \cap S$. Set S is locally starshaped at point x of S if and only if there is some neighborhood N of x such that x sees via S each point of $N \cap S$. Finally, set S is starshaped if and only if there is some point p in S such that p sees via S each point of S, and the set of all such points p is called the (convex) kernel of S.

A well-known theorem of Krasnosel'skii [3] states that if S is a nonempty compact set in R^{d}, S is starshaped if and only if every $d+1$ points of S are visible via S from a common point. Moreover, "points of S " may be replaced by "boundary points of S " to produce a stronger result. In [1], the concept of clear visibility, together with work by Lawrence, Hare, and Kenelly [4], were used to obtain the following

