SOME EXPLICIT UPPER BOUNDS ON THE CLASS NUMBER AND REGULATOR OF A CUBIC FIELD WITH NEGATIVE DISCRIMINANT

PIERRE BARRUCAND, JOHN LOXTON AND H. C. WILLIAMS

Explicit upper bounds are developed for the class number and the regulator of any cubic field with a negative discriminant. Lower bounds on the class number are also developed for certain special pure cubic fields.

1. Introduction. Let \mathscr{K} be any cubic number field with discriminant $\Delta < 0$ and regulator R. Since either $4 | \Delta$ or $\Delta \equiv 1 \pmod{4}$, we may assume that $\Delta = df^2$, where d is the discriminant of a quadratic field. Further, since d < 0 and either 4 | d or $d \equiv 1 \pmod{4}$, we must have $|d| \ge 3$. Let $\mathscr{O}_{\mathscr{K}}$ be the ring of all algebraic integers of \mathscr{K} and let h be the number of ideal classes of $\mathscr{O}_{\mathscr{K}}$.

From a classical, general result of Landau [11] we know that

$$hR = O(\sqrt{|\Delta|} (\log |\Delta|)^2).$$

More recently Siegel [19] and Lavrik [13] have given general results from which an explicit constant c can be easily determined such that

$$hR < c\sqrt{|\Delta|} (\log |\Delta|)^2.$$

However, in the case of a pure cubic field (d = -3), Cohn [6] has shown that

$$hR = O(\sqrt{|\Delta|} \log |\Delta| \log \log |\Delta|).$$

In this paper we will develop an explicit upper bound on hR which depends on d and $f (= \sqrt{\Delta/d})$. In the pure cubic case our results give

$$hR < \frac{\sqrt{|\Delta|}}{6\sqrt{3}} \log |\Delta|.$$

We make use of the well-known fact that

$$\Phi(1) = \lim_{s \to 1} \frac{\zeta_{\mathscr{K}}(s)}{\zeta(s)} = h\kappa,$$

where

$$\kappa = CR$$
 and $C = 2\pi/\sqrt{|\Delta|}$.