SOME EXPLICIT UPPER BOUNDS ON THE CLASS NUMBER AND REGULATOR OF A CUBIC FIELD WITH NEGATIVE DISCRIMINANT

Pierre Barrucand, John Loxton and H. C. Williams

> Explicit upper bounds are developed for the class number and the regulator of any cubic field with a negative discriminant. Lower bounds on the class number are also developed for certain special pure cubic fields.

1. Introduction. Let \mathscr{K} be any cubic number field with discriminant $\Delta<0$ and regulator R. Since either $4 \mid \Delta$ or $\Delta \equiv 1(\bmod 4)$, we may assume that $\Delta=d f^{2}$, where d is the discriminant of a quadratic field. Further, since $d<0$ and either $4 \mid d$ or $d \equiv 1(\bmod 4)$, we must have $|d| \geq 3$. Let $\mathcal{O}_{\mathscr{K}}$ be the ring of all algebraic integers of \mathscr{K} and let h be the number of ideal classes of $\mathcal{O}_{\mathscr{X}}$.

From a classical, general result of Landau [11] we know that

$$
h R=O\left(\sqrt{|\Delta|}(\log |\Delta|)^{2}\right)
$$

More recently Siegel [19] and Lavrik [13] have given general results from which an explicit constant c can be easily determined such that

$$
h R<c \sqrt{|\Delta|}(\log |\Delta|)^{2} .
$$

However, in the case of a pure cubic field $(d=-3)$, Cohn [6] has shown that

$$
h R=O(\sqrt{|\Delta|} \log |\Delta| \log \log |\Delta|)
$$

In this paper we will develop an explicit upper bound on $h R$ which depends on d and $f(=\sqrt{\Delta / d})$. In the pure cubic case our results give

$$
h R<\frac{\sqrt{|\Delta|}}{6 \sqrt{3}} \log |\Delta| .
$$

We make use of the well-known fact that

$$
\Phi(1)=\lim _{s \rightarrow 1} \frac{\zeta_{\mathscr{X}}(s)}{\zeta(s)}=h \kappa,
$$

where

$$
\kappa=C R \quad \text { and } \quad C=2 \pi / \sqrt{|\Delta|} .
$$

