EIGENFUNCTIONS OF THE NONLINEAR EQUATION $\Delta u + \nu f(x, u) = 0 \text{ IN } R^2$

Mei-Chi Shaw

In this paper we consider the existence of eigenfunctions of the boundary value problem for the nonlinear equation mentioned in the title with vanishing boundary values on bounded planar domains.

Let Ω be a bounded domain in \mathbb{R}^2 . In this paper we consider the existence of eigenfunctions of the boundary value problem

(0.1)
$$\begin{cases} \Delta u + \nu f(x, u) = 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where f is a continuous function in both x and u variables for all $(x, u) \in \Omega \times R$. We assume that f satisfies the growth condition

(0.2)
$$\begin{cases} f(x,0) = 0\\ |f(x,u)| \le A + B|u|^m e^{\alpha u^2} \text{ uniformly in } x \end{cases}$$

for some nonnegative constants A, B, m and $\alpha > 0$. We note that $u \equiv 0$ is a trivial solution for (0.1). Let $H_0^1(\Omega)$ denote the completion of the space of compactly supported C^1 functions on Ω under the norm

$$\|u\|_{H_0^1(\Omega)} = \left(\int_{\Omega} |\nabla u|^2\right)^{1/2}$$

We set $F(x, u) = \int_0^u f(x, s) ds$. Our main results are the following:

THEOREM 1. Let f(x, u) be a continuous function in $(x, u) \in \Omega \times R$ and f satisfies condition (0.2). For any $\mu > 0$ such that there exists a $v \in H_0^1(\Omega)$ with $\int_{\Omega} |\nabla v|^2 = \gamma < (4\pi/\alpha)$ and $\int_{\Omega} F(x, v) = \mu$, the eigenvalue problem (0.1) has a nontrivial eigenfunction u satisfying $\int_{\Omega} F(x, u) = \mu$.

If we are interested in positive solutions, a similar theorem applies.

THEOREM 2. Let f(x, u) be a continuous function in $(x, u) \in \Omega \times R$ that satisfies condition (0.2) and the condition

(0.2')
$$f(x, u) > 0 \quad if u > 0.$$