PRIMALITY OF THE NUMBER OF POINTS ON AN ELLIPTIC CURVE OVER A FINITE FIELD

Neal Koblitz

Abstract

Given a fixed elliptic curve E defined over \mathbf{Q} having no rational torsion points, we discuss the probability that the number of points on E $\bmod p$ is prime as the prime p varies. We give conjectural asymptotic formulas for the number of $p \leq n$ for which this number is prime, both in the case of a complex multiplication and a non-CM curve E. Numerical evidence is given supporting these formulas.

1. Let E be an elliptic curve defined over the field \mathbf{Q} of rational numbers which has no rational torsion points. Motivated by an analogy with a classical question about finite fields (see §2) and by cryptographic applications (where certain public key cryptosystems use an elliptic curve whose group of points $\bmod p$ has order divisible by a very large prime, see [6]), we ask the question: As the prime p varies, what is the probability that the number of points on $E \bmod p$ is prime? After recalling analogous questions in classical number theory, in $\S 3$ we give a conjectural answer to this question in the case of elliptic curves without complex multiplication, and present some numerical evidence supporting the conjecture. In §4 we give a conjectural asymptotic formula in the case of CM curves, and decribe some supporting evidence.
2. In Hardy and Littlewood's paper [4] about the Goldbach conjecture and related questions, they give a conjectural asymptotic formula for half the number of twin primes (primes p for which $p+2$ is prime) less than n :

$$
\begin{equation*}
C_{2} \frac{n}{(\log n)^{2}}, \quad \text { where } C_{2}=\prod_{\text {primes } l \geq 3}\left(1-\frac{1}{(l-1)^{2}}\right) \approx 0.660164 . \tag{1}
\end{equation*}
$$

The same heuristics lead to the identical asymptotic formula for a slightly different question (not considered in the Hardy-Littlewood paper): For how many primes $5 \leq p \leq n$ is $(p-1) / 2$ prime? It should be recalled, by the way, that, as in the case of twin primes, no one has even been able to prove that there are infinitely many p such that both p and $(p-1) / 2$ are prime.

