STABILITY OF UNFOLDINGS IN THE CONTEXT OF EQUIVARIANT CONTACT-EQUIVALENCE

JEAN-JACQUES GERVAIS

M. Golubitsky and D. Schaeffer introduced the notion of equivariant contact-equivalence between germs of C^{∞} equivariant mappings, in order to study perturbed bifurcation problems having a certain symmetry property. The main tool used is the so-called "Unfolding Theorem" for the qualitative description of the symmetry-preserving perturbations of these problems. From the point of view of applications, a relevant notion is that of stability of unfoldings. In this paper we prove the equivalence of the universality and the stability of unfoldings in the context of equivariant contact-equivalence.

1. Universal Γ -unfolding. Let Γ be a compact Lie group acting orthogonally on \mathbb{R}^n and \mathbb{R}^p . We write $\mathscr{C}_{n,p}^{\Gamma}$ for the space of C^{∞} germs $f: (\mathbb{R}^n, 0) \to \mathbb{R}^p$ of Γ -equivariant mappings (i.e. $f(\gamma x) = \gamma f(x)$ for all $\gamma \in \Gamma$). The space of Γ -invariant C^{∞} -germs $h: (\mathbb{R}^n, 0) \to \mathbb{R}$ (i.e. $h(\gamma x) = h(x)$ for all $\gamma \in \Gamma$) is denoted by \mathscr{C}_n^{Γ} . In what follows we shall consider germs $G: (\mathbb{R}^n \times \mathbb{R}, 0) \to \mathbb{R}^p$ and $F: (\mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^q, 0) \to \mathbb{R}^p$ and we shall assume that Γ acts trivially on \mathbb{R} and \mathbb{R}^q .

The notion of equivariant contact-equivalence introduced by Golubitsky and Schaeffer [3] is the following:

DEFINITION 1.1. We say that G_1 and $G_2 \in \mathscr{E}_{n+1,p}^{\Gamma}$ are Γ -equivalent if

$$G_1(x,\lambda) = T(x,\lambda)G_2(X(x,\lambda),\Lambda(\lambda))$$

where

(1.1.1)
$$T: (\mathbf{R}^n \times \mathbf{R}, 0) \to \operatorname{Gl}_p(\mathbf{R}) \quad \text{is } C^{\infty}.$$

(1.1.2)
$$(X, \Lambda): (\mathbf{R}^n \times \mathbf{R}, 0) \to (\mathbf{R}^n \times \mathbf{R}, 0)$$
 is C^{∞} ,

$$\det(d_X X(0)) > 0 \quad \text{and} \quad \Lambda'(0) > 0.$$

(1.1.3)
$$X(\gamma x, \lambda) = \gamma X(x, \lambda)$$
 for all $\gamma \in \Gamma$.