THREE QUAVERS ON UNITARY ELEMENTS IN C*-ALGEBRAS

GERT K. PEDERSEN

Henry Dye in memoriam

Unitary polar decomposition of elements in C^* -algebras is discussed in relation to the theory of unitary rank; and characterizations of algebras admitting weak or unitary polar decomposition of every element are given.

Introduction. Let A be a unital C^* -algebra, and denote by GL(A) and $\mathscr{U}(A)$ the groups of invertible and unitary elements in A, respectively. The set

$$\mathscr{P}(A) = \mathscr{U}(A)A_+$$

consists of those elements that admit a unitary polar decomposition in A. The formulae $x = (x|x|^{-1})|x|$ and $x = u|x| = \lim u(|x|+n^{-1})$ show that $GL(A) \subseteq \mathscr{P}(A)$ and that GL(A) is dense in $\mathscr{P}(A)$. Moreover, it was shown in [12] and [16] that each element in A has a canonical approximant in $\mathscr{P}(A)^{=}$.

We know from Mazur's theorem that $GL(A) = A \setminus \{0\}$ only if A = C. The corresponding question, when $\mathscr{P}(A) = A$, is more subtle, and will be addressed in the third of these short notes. In the first two we shall study certain phenomena in the unit ball A^1 of A. In particular we shall be concerned with the set

$$\mathscr{P}(A)^1 = \mathscr{U}(A)A^1_+.$$

(As usual we write S^1 for $S \cap A^1$, for any subset S of A.) It is quite easy to see that

$$\operatorname{GL}(A)^1 \subseteq \mathscr{P}(A)^1 \subseteq \frac{1}{2}(\mathscr{U}(A) + \mathscr{U}(A)),$$

and that these sets are dense in one another. By [16, Proposition 3.16] their common closure $(\mathscr{P}(A)^1)^=$ consists of those elements x in A such that for every $\varepsilon > 0$ there are unitary elements u_1 , u_2 and u_3 with $x = \frac{1}{2}(1-\varepsilon)u_1 + \frac{1}{2}(1-\varepsilon)u_2 + \varepsilon u_3$.

1. Unitary rank revisited. Based on the Russo-Dye theorem [17], the theory of unitary rank is the discussion of the least number of unitaries