DISTANCE BETWEEN UNITARY ORBITS IN VON NEUMANN ALGEBRAS

Fumio Hiai and Yoshihiro Nakamura
Dedicated to Professor Shozo Koshi on his 60th birthday

Abstract

Let \mathscr{M} be a semifinite factor. For normal operators x and y in \mathscr{M}, introducing the spectral distance $\delta(x, y)$, we show that $\delta(x, y) \geq$ $\operatorname{dist}(\mathscr{U}(x), \mathscr{U}(y)) \geq c^{-1} \delta(x, y)$ with a universal constant c, where $\operatorname{dist}(\mathscr{U}(x), \mathscr{U}(y))$ denotes the distance between the unitary orbits $\mathscr{U}(x)$ and $\mathscr{U}(y)$. The equality $\operatorname{dist}(\mathscr{U}(x), \mathscr{U}(y))=\delta(x, y)$ holds in several cases. Submajorizations are established concerning the spectral scales of τ-measurable selfadjoint operators affiliated with \mathscr{M}. Using these submajorizations, we obtain the formulas of L^{p} distance and anti- L^{p}-distance between unitary orbits of τ-measurable selfadjoint operators in terms of their spectral scales. Furthermore the formulas of those distances in Haagerup L^{p}-spaces are obtained when \mathscr{M} is a type III_{1} factor. The appendix by H. Kosaki is the generalized Powers-Størmer inequality in Haagerup L^{p}-spaces.

Introduction. It is an interesting problem in matrix theory to estimate distances between unitary orbits of matrices by their eigenvalues. Let A and B be $n \times n$ normal matrices whose eigenvalues are $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \beta_{n}$, respectively, with multiplicities counted. Let $\operatorname{dist}(\mathscr{U}(A), \mathscr{U}(B))$ denote the distance between the unitary orbits $\mathscr{U}(A)$ and $\mathscr{U}(B)$. The optimal matching distance between the eigenvalues of A and B is given by

$$
\delta(A, B)=\min _{\pi} \max _{i}\left|\alpha_{i}-\beta_{\pi(i)}\right|,
$$

where π runs over all permutations of $\{1, \ldots, n\}$. Then

$$
\operatorname{dist}(\mathscr{U}(A), \mathscr{U}(B)) \leq \delta(A, B)
$$

is immediate. Bhatia, Davis and McIntosh [9] proved that

$$
\operatorname{dist}(\mathscr{U}(A), \mathscr{U}(B)) \geq c^{-1} \delta(A, B)
$$

with a universal constant c. A difficult and still open conjecture is that $\operatorname{dist}(\mathscr{U}(A), \mathscr{U}(B))=\delta(A, B)$ holds for every pair of normal matrices A and B (i.e. $c=1$). But this equality was proved to hold for several classes of normal matrices (see [7, 10, 21, 41, 45]). The analogous

