PROPAGATION OF HYPO-ANALYTICITY ALONG BICHARACTERISTICS

S. Berhanu

Abstract

It is shown here the hypo-analytic singularities for solutions propagate along the bicharacteristics of hypo-analytic differential operators of principal type. This generalizes the well-known similar result for analytic differential operators.

0. Introduction. In [4] Hormander proved a result concerning the propagation of C^{∞} singularities of solutions of $P u=f$ for a smooth linear partial differential operator P whose leading symbol is real. The analytic version of this question was treated by Hanges in [3]. In this paper we prove a similar theorem for what we call hypo-analytic differential operators. The paper is organized as follows. In $\S 1$ we discuss the structures we work in and introduce our operators. In $\S 2$ we recall the definition of microlocal hypo-analyticity and give a statement of the main result. $\S 3$ discusses the Fourier transform criterion of microlocal hypo-analyticity due to Baouendi, Chang and Treves [1]. A theorem concerning this criterion is proved in the same section and then used in the proof of our main result.
1. Hypo-analytic differential operators. Our results deal with structures which are a special case of the hypo-analytic structures introduced in [1]. Let Ω be a C^{∞} manifold of dimension m. A hypoanalytic structure of maximal dimension on Ω is the data of an open covering (U_{α}) of Ω and for each index α, of $m C^{\infty}$ functions $Z_{\alpha}^{1}, \ldots, Z_{\alpha}^{m}$ satisfying the following two conditions:
(i) $d Z_{\alpha}^{1}, \ldots, d Z_{\alpha}^{m}$ are linearly independent at each point of U_{α};
(ii) if $U_{\alpha} \cap U_{\beta} \neq \varnothing$, there are open neighbors O_{α} of $Z_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$ and O_{β} of $Z_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)$ and a holomorphic map F_{β}^{α} of O_{α} onto O_{β}, such that

$$
Z_{\beta}=F_{\beta}^{\alpha} \circ Z_{\alpha} \quad \text { on } U_{\alpha} \cap U_{\beta} .
$$

We will use the notation $Z_{\alpha}=\left(Z_{\alpha}^{1}, \ldots, Z_{\alpha}^{m}\right): U_{\alpha} \rightarrow C^{m}$. A distribution h defined on an open neighborhood of a point p_{0} of Ω is called hypo-analytic at p_{0} if there is a local chart $\left(U_{\alpha}, Z_{\alpha}\right)$ of the above type whose domain contains p_{0} and a holomorphic function \tilde{h} defined on

