ON THE FINEST LEBESGUE TOPOLOGY ON THE SPACE OF ESSENTIALLY BOUNDED MEASURABLE FUNCTIONS

MARIAN NOWAK

Let (Ω, Σ, μ) be a σ -finite measure space and let \mathscr{T}_0 and \mathscr{T}_∞ denote the usual metrizable topologies on L^0 and L^∞ , respectively. In this paper the space L^∞ with the mixed topology $\gamma(\mathscr{T}_\infty, \mathscr{T}_0|_{L^\infty})$ is examined. It is proved that $\gamma(\mathscr{T}_\infty, \mathscr{T}_0|_{L^\infty})$ is the finest Lebesgue topology on L^∞ , and that it coincides with the Mackey topology $\tau(L^\infty, L^1)$.

1. Introduction. For notation and terminology concerning Riesz spaces and locally solid topologies we refer to [1].

Let (Ω, Σ, μ) be a σ -finite measure space, and let L^0 denote the set of equivalence classes of all real valued μ -measurable functions defined and finite a.e. on Ω . Then L^0 is a super Dedekind complete Riesz space under the ordering $x \leq y$, whenever $x(t) \leq y(t)$ a.e. on Ω . The Riesz *F*-norm

$$||x||_0 = \int_{\Omega} |x(t)|(1+|x(t)|)^{-1}f(t) d\mu \quad \text{for } x \in L^0,$$

where a function $f: \Omega \to (0, \infty)$ is μ -measurable with $\int_{\Omega} f(t) d\mu = 1$, determines a Lebesgue topology on L^0 , which we will denote by \mathcal{T}_0 (see [7, I, §6], [1, Theorem 24.67]). This topology generates convergence in measure on the measurable subsets of Ω whose measure is finite. We will denote by \mathcal{T}_{∞} the topology on L^{∞} generated by the usual *B*-norm

$$\|x\|_{\infty} = \operatorname{ess\,sup}_{t\in\Omega} |x(t)|.$$

Moreover, we denote by $\sigma(L^{\infty}, L^1)$, $\tau(L^{\infty}, L^1)$ and $\beta(L^{\infty}, L^1)$ the weak, Mackey and strong topologies on L^{∞} respectively, with respect to the dual pair $(L^{\infty}, L^1, \langle , \rangle)$, where

$$\langle x, y \rangle = \int_{\Omega} x(t)y(t) d\mu \quad \text{for } x \in L^{\infty}, y \in L^{1}.$$

In this paper we shall examine the space L^{∞} with the mixed topology $\gamma(\mathcal{T}_{\infty}, \mathcal{T}_{0}|_{L^{\infty}})$. This topology is defined as follows. Take a sequence