EXTENSION THEOREMS FOR FUNCTIONS OF VANISHING MEAN OSCILLATION

Peter J. Holden

A locally integrable function is said to be of vanishing mean oscillation (VMO) if its mean oscillation over cubes in \mathbb{R}^d converges to zero with the volume of the cubes. We establish necessary and sufficient conditions for a locally integrable function defined on a bounded measurable set of positive measure to be the restriction to that set of a VMO function.

1. Introduction. Let F be a locally integrable function on \mathbf{R}^d and let Q be a cube in \mathbf{R}^d with sides parallel to the axes. (We denote the set of all such cubes in \mathbf{R}^d by \mathfrak{F}' .) We denote the Lebesgue measure of Q by |Q| and the length of Q by l(Q). We denote the average of Fon Q by F_Q ; that is $F_Q = \frac{1}{|Q|} \int_Q F dt$. We say F is of bounded mean oscillation (abbreviated BMO(\mathbf{R}^d) or simply BMO) if

(1.1)
$$\sup_{Q\in\mathfrak{F}'}\frac{1}{|Q|}\int_{Q}|F-F_{Q}|<\infty.$$

We denote this supremum by $||F||_*$. $|| ||_*$ defines a norm on BMO and BMO is a Banach space with respect to this norm. (We identify functions which differ by a constant.) If in (1.1) we restrict the cubes to be dyadic we obtain the space dyadic-BMO and we denote the corresponding norm by $|| ||_{*,d}$. (By a dyadic cube we mean a cube of the form $Q = \{k_j < x_j < (k_j + 1)2^{-n}; 1 \le j \le d\}$ where *n* and k_j , $1 \le j \le d$, are integers.) We will denote the set of dyadic cubes of length 2^{-n} by D_n and Q_0 will denote the dyadic unit cube. The function space BMO was introduced in 1961 by John and Nirenberg [7] who proved the following fundamental theorem:

THEOREM 1.1. Let F be a locally integrable function on \mathbb{R}^d , and for each $n \in \mathbb{Z}$ define:

$$\overline{\mu}_n(F) = \inf\left\{\frac{1}{\lambda}: \sup_{l(Q) \leq 2^{-n}} \inf_{a \in \mathbf{R}} \frac{1}{|Q|} \int_Q e^{\lambda|F-a|} < 2\right\}.$$

Then,

- (1) $F \in BMO$ if and only if
- (2) $\sup_{n\in\mathbb{Z}}\overline{\mu}_n(F)<\infty.$