AN ALMOST CLASSIFICATION OF COMPACT LIE GROUPS WITH BORSUK-ULAM PROPERTIES

Waclaw Marzantowicz

Abstract

We say that a compact Lie group G has the Borsuk-Ulam property in the weak sense if for every orthogonal representation V of G and every G-equivariant map $f: S(V) \rightarrow S(V), V^{G}=\{0\}$, of the unit sphere we have $\operatorname{deg} f \neq 0$.

We say that G has the Borsuk-Ulam property in the strong sense if for any two orthogonal representations V, W of G with $\operatorname{dim} W=$ $\operatorname{dim} V$ and $W^{G}=V^{G}=\{0\}$ and every G-equivariant map $f: S(V)$ $\rightarrow S(W)$ of the unit spheres we have $\operatorname{deg} f \neq 0$. In this paper a complete classification, up to isomorphism, of group with the weak Borsuk-Ulam property is given. A classification of groups with the strong Borsuk-Ulam property does not cover nonabelian p-groups with all elements of the order p. In fact we deal with a more general definition admitting a nonempty fixed point set of G on the sphere $S(V)$.

1. The main theorems. In order to formulate our main results we introduce the following notation. Let G be a compact Lie group. We denote by G_{0} the component of identity of and by Γ the quotient group G / G_{0}. We use standard notation of the theory of compact transformation groups (see for instance [4] or [5]). In particular, for every subgroup $H \subset G$, the fixed point set of H on a G-space X is denoted by X^{H}. Also, for a G-equivariant map $f: X \rightarrow Y$ between two G-spaces, we denote by f^{H} its restriction to the space X^{H}. The symbol (n, m) stands for the greatest common divisor of the integers n, m with the notation $(0,1)=0$ and $|G|$ for the rank of the (finite) group G. We will work with the following definition of the BorsukUlam property (cf. [11]).

Definition I. (A) We say that G has the Borsuk-Ulam property in the weak sense A if for every orthogonal representation V of G and every G-equivariant map $f: S(V) \rightarrow S(V)$ if $\left(\operatorname{deg} f^{G},|\Gamma|\right)=1$ then $\operatorname{deg} f \neq 0$.
Remark. Note that in the case $V^{G}=\{0\}$ there is no condition on $\operatorname{deg} f^{G}$ and the property then requires that $\operatorname{deg} f \neq 0$ for every G equivariant map. Also, if $G=G_{0}$ then the condition $\left(\operatorname{deg} f^{G},|\Gamma|\right)=$ 1 means that $\operatorname{deg} f^{G} \neq 0$.

