AN ALMOST CLASSIFICATION OF COMPACT LIE GROUPS WITH BORSUK-ULAM PROPERTIES

WACLAW MARZANTOWICZ

We say that a compact Lie group G has the Borsuk-Ulam property in the weak sense if for every orthogonal representation V of G and every G-equivariant map $f: S(V) \to S(V), V^G = \{0\}$, of the unit sphere we have deg $f \neq 0$.

We say that G has the Borsuk-Ulam property in the strong sense if for any two orthogonal representations V, W of G with dim W =dim V and $W^G = V^G = \{0\}$ and every G-equivariant map $f: S(V) \rightarrow S(W)$ of the unit spheres we have deg $f \neq 0$. In this paper a complete classification, up to isomorphism, of group with the weak Borsuk-Ulam property is given. A classification of groups with the strong Borsuk-Ulam property does not cover nonabelian p-groups with all elements of the order p. In fact we deal with a more general definition admitting a nonempty fixed point set of G on the sphere S(V).

1. The main theorems. In order to formulate our main results we introduce the following notation. Let G be a compact Lie group. We denote by G_0 the component of identity of and by Γ the quotient group G/G_0 . We use standard notation of the theory of compact transformation groups (see for instance [4] or [5]). In particular, for every subgroup $H \subset G$, the fixed point set of H on a G-space X is denoted by X^H . Also, for a G-equivariant map $f: X \to Y$ between two G-spaces, we denote by f^H its restriction to the space X^H . The symbol (n, m) stands for the greatest common divisor of the integers n, m with the notation (0, 1) = 0 and |G| for the rank of the (finite) group G. We will work with the following definition of the Borsuk-Ulam property (cf. [11]).

DEFINITION I. (A) We say that G has the Borsuk-Ulam property in the weak sense A if for every orthogonal representation V of G and every G-equivariant map $f: S(V) \to S(V)$ if $(\deg f^G, |\Gamma|) = 1$ then

 $\deg f \neq 0.$

REMARK. Note that in the case $V^G = \{0\}$ there is no condition on deg f^G and the property then requires that deg $f \neq 0$ for every *G*-equivariant map. Also, if $G = G_0$ then the condition $(\deg f^G, |\Gamma|) = 1$ means that deg $f^G \neq 0$.