SEQUENCE TRANSFORMATIONS THAT GUARANTEE A GIVEN RATE OF CONVERGENCE

G. H. FRICKE AND J. A. FRIDY

Let t be a positive number sequence and define the sequence space $\Omega(t) := \{x : x_k = O(t_k)\}$. Characterizations are given for matrices that map the spaces l^1 , l^∞ , c, or c_0 into $\Omega(t)$, thus ensuring that the transformed sequence converges at least as fast as t. These results yield information about matrices that map l^1 , l^∞ , c, or c_0 into $G := \bigcup_{r \in (0,1)} \Omega(r^n)$, the set of geometrically dominated sequences.

1. Introduction. For each r in the interval (0, 1) let

$$G(r) = \{ \text{complex sequences } x \colon x_k = O(r^k) \}$$

and define the set of geometrically dominated sequences as

$$G = \bigcup_{r \in (0, 1)} G(r).$$

The analytic sequences are defined by

$$\mathscr{A} = \left\{ \text{complex sequences } x \colon \limsup_{n} |x_n|^{1/n} < \infty \right\}.$$

Obviously $G \subseteq \mathscr{A}$. In [2, 6, 9, 10] the various authors studied matrix transformations from \mathscr{A} or G into l^1 , c, or l^{∞} , but the question of mapping from l^1 , c, or l^{∞} into \mathscr{A} or G was not considered. We shall use the customary notation for a matrix transformation: if A is an infinite matrix with complex entries and x is a complex number sequence, then A transforms x into the sequence Ax whose nth term is given by

$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k.$$

The present work began as a study of $l^1 - G$ and c - G matrices, but it was found that such results are merely special cases of a more general theory. To set the stage for the general theory we replace the geometric sequence $\{r^k\}$ with a nonnegative sequence t and define

$$\mathbf{\Omega}(t) = \{x \colon x_k = O(t_k)\}.$$