MANIFOLD SUBGROUPS OF THE HOMEOMORPHISM GROUP OF A COMPACT *Q*-MANIFOLD

KATSURO SAKAI AND RAYMOND Y. WONG

Let X be a compact PL manifold and Q denote the Hilbert cube I^{ω} . In this paper, we show that the following subgroups of the homeomorphism group $H(X \times Q)$ of $X \times Q$ are manifolds:

$$\begin{split} H^{\mathrm{fd}}(X\times Q) &= \{h\times \mathrm{id} \ | h\in H(X\times I^n) \ \mathrm{for \ some} \ n\in\mathbb{N} \} \,, \\ H^{\mathrm{PL}}(X\times Q) &= \{h\times \mathrm{id}\in H^{\mathrm{fd}}(X\times Q) | h \ \mathrm{is} \ PL \} \ \mathrm{and} \end{split}$$

 $H^{\text{LIP}}(X \times Q) =$ all Lipschitz homomorphisms of $X \times Q$

under some suitably chosen metric.

In fact, let $\tilde{H}^*(X \times Q)$ denote the subspace consisting of those homeomorphisms which are isotopic to a member of $H^*(X \times Q)$, where * = fd, PL or LIP respectively. Then it is shown that

- (1) $(\widetilde{H}^{PL}(X \times Q), H^{PL}(X \times Q))$ is an (l_2, l_2^f) -manifold pair,
- (2) $(\tilde{H}^{\text{LIP}}(X \times Q), H^{\text{LIP}}(X \times Q))$ is an $(l_2, l_2^{\tilde{Q}})$ -manifold pair and
- (3) $H^{\rm fd}(X \times Q)$ is an $(l_2 \times l_2^f)$ -manifold and dense in $\widetilde{H}^{\rm fd}(X \times Q)$,

where l_2 is the separable Hilbert space, $l_2^f = \{(x_i) \in l_2 | x_i = 0 \\ \text{except for finitely many } i\}$ and $l_2^Q = \{(x_i) \in l_2 | \sup |i \cdot x_i| < \infty\}$.

0. Introduction. By H(X), we denote the homeomorphism group of a compactum X onto itself with the compact-open topology. Let $Q = I^{\omega}$ be the Hilbert cube and l_2 the separable Hilbert space. A separable manifold modeled on Q or l_2 is called a Q-manifold or l_2 -manifold, respectively. By the combined works of [Ge₁], [To₁] and [Fe] or [To₂], it was shown that H(M) is an l_2 -manifold for a compact Q-manifold M. In this paper, we concern ourselves with subgroups of H(M) which are manifolds.

Let l_2^f and l_2^Q be the linear spans of the natural orthonormal basis of l_2 and the Hilbert cube $\prod_{n \in \mathbb{N}} [-1/n, 1/n]$ in l_2 , respectively, that is

$$l_2^f = \{x \in l_2 | x(n) = 0 \text{ except for finitely many } n\},\$$
$$l_2^Q = \left\{x \in l_2 | \sup_{n \in \mathbb{N}} |n \cdot x(n)| < \infty\right\},\$$

where x(n) denotes the *n*th coordinate of x. A separable manifold