D-HARMONIC DISTRIBUTIONS AND GLOBAL HYPOELLIPTICITY ON NILMANIFOLDS

JACEK M. CYGAN AND LEONARD F. RICHARDSON

Let $M = \Gamma \setminus N$ be a compact nilmanifold. A system of differential operators D_1, \ldots, D_k on M is globally hypoelliptic (GH) if when $D_1 f = g_1, \ldots, D_k f = g_k$ with $f \in \mathscr{D}'(M)$, $g_1, \ldots, g_k \in C^{\infty}(M)$ then $f \in C^{\infty}(M)$. Let X_1, \ldots, X_k be real vector fields on M induced by the Lie algebra \mathscr{N} of N. We study the relationships between (GH) of the system X_1, \ldots, X_k on M, (GH) of the operator $D = X_1^2 + \cdots + X_k^2$, the constancy of D-harmonic distributions on M, and related algebraic conditions on $X_1, \ldots, X_k \in \mathscr{N}$.

0. Introduction. Let $M = \Gamma \setminus N$ be a compact nilmanifold, where N is a connected, simply connected real nilpotent Lie group with a discrete subgroup Γ . There is a unique probability measure μ defined on the Borel sets on M and invariant under the action of N on M by right translations. Every μ -integrable function f on M defines a distribution by the formula $(f, \phi) = \int_M f \phi \, d\mu$, $\phi \in C^{\infty}(M)$. Let \mathcal{N} be the Lie algebra of N. If $X \in \mathcal{N}$ then X induces a vector field (which we will denote also by X) on $\Gamma \setminus N$ by $(Xf)(\Gamma n) =$ $(d/dt)|_{t=0} f(\Gamma n \exp tX)$. Consider the left-invariant sum of squares of such vector fields $X_1, \ldots, X_k \in \mathcal{N}$. This second order differential operator $D = X_1^2 + \dots + X_k^2$ can be regarded as acting on the right on distributions on $\Gamma \setminus N$. A distribution $u \in \mathscr{D}'(M)$ is *D*-harmonic if Du = 0 on M. The operator D is globally hypoelliptic (GH) if when Df = g with $f \in \mathscr{D}'(M), g \in C^{\infty}(M)$, then $f \in C^{\infty}(M)$. The system of vector fields X_1, \ldots, X_k on M is (GH) if when $X_1 f =$ $g_1, \ldots, X_k f = g_k$ with $f \in \mathscr{D}'(M), g_1, \ldots, g_k \in C^{\infty}(M)$, then $f \in C^{\infty}(M)$. In this paper we investigate relationships between (GH) of D, (GH) of the corresponding system X_1, \ldots, X_k of vector fields, the constancy of D-harmonic distributions on M, and related algebraic conditions on $X_1, \ldots, X_k \in \mathcal{N}$.

Our results are summarized in the figure below. In this figure, functionals $\Lambda \in \mathcal{N}_j^*$ are assumed to be *integral*, i.e. $\Lambda(\log \Gamma \cap \mathcal{N}_j) \subseteq \mathbb{Z}$; $\mathcal{N} = \mathcal{N}_1 \supset \mathcal{N}_2 \supset \cdots \supset \mathcal{N}_r \supset \mathcal{N}_{r+1} = \{0\}$ is the *lower central series* of \mathcal{N} (we say \mathcal{N} is of *step* r), and \mathcal{L} is the subalgebra of \mathcal{N} Liegenerated by X_1, \ldots, X_k . Let \mathcal{W}_{π} be an ideal in ker $(d\pi)$ such that