THE BOUNDARY OF A SIMPLY CONNECTED DOMAIN AT AN INNER TANGENT POINT

John Marafino

Let T^{*} be the set of accessible boundary points at which the inner tangent to ∂D exists. That is, if $a \in T^{*}$ and $w(a)$ represents its complex coordinate, then there exists a unique $\nu(a), 0 \leq \nu(a)<2 \pi$, such that for each $\varepsilon>0 \quad\left(\varepsilon<\frac{\pi}{2}\right)$ there exists a $\delta>0$ such that

$$
\begin{aligned}
& \Delta=\left\{w(a)+\rho e^{i \nu}: 0<\rho<\delta,|\nu-\nu(a)|<\frac{\pi}{2}-\varepsilon\right\} \subset D \\
& \text { and } w \rightarrow a \text { as } w
\end{aligned} \rightarrow w(a), \quad w \in \Delta .
$$

Let $\gamma(a, r)$ represent the unique component of $D \cap\{|w-w(a)|=r\}$ that intersects the inner normal $\left\{w(a)+\rho e^{i \nu(a)}: \rho>0\right\}, L(a, r)$ denote the length of $\gamma(a, r)$ and set $A(a, r)=\int_{0}^{r} L\left(a, r^{\prime}\right) d r^{\prime}$. Finally let $A D^{*}$ be those points of T^{*} at which a non-zero angular derivative exists.

Our main result is a purely geometrical proof of a theorem that describes the boundary of D near $a \in T^{*}$. As a consequence we have
(1) a geometric description of the boundary of D near almost every $a \in A D^{*}$ that is a generalization of the geometric behavior of a smooth curve,
(2) an answer on T^{*} and hence on $A D^{*}$ of the two open questions and conjectures made by McMillan in [3, p. 739] concerning the length and area ratios

$$
\frac{L(a, r)}{2 \pi r} \quad \text { and } \quad \frac{A(a, r)}{\pi r^{2}} \quad \text { as } r \rightarrow 0
$$

1. Introduction.

1.1. Many of the definitions introduced in $\S \S 1.1$ to 1.3 can be found in McMillan's papers.

Let D be a simply connected plane domain, not the whole plane, and define on D the relative metric d_{D}, the relative distance between two points of D being defined as the infimum of the Euclidean diameters of curves that lie in D and join these two points. Let ($D^{*}, d_{D^{*}}$) be the completion of the metric space $\left(D, d_{D}\right)$. Now $D^{*}=D \cup A^{*}$ where D is an isometric copy of D in D^{*} and A^{*} is the set of accessible boundary points of D. Any limits involving accessible boundary points are taken in $d_{D^{*}}$.

