ON THE ANALYTIC REFLECTION OF A MINIMAL SURFACE

Jaigyoung Choe

Abstract

For a long time it has been known that in a Euclidean space one can reflect a minimal surface across a part of its boundary if the boundary contains a line segment, or if the minimal surface meets a plane orthogonally along the boundary. The proof of this fact makes use of H. A. Schwarz's reflection principle for harmonic functions.

In this paper we show that a minimal surface, as a conformal and harmonic map from a Riemann surface into \mathbf{R}^{3}, can also be reflected analytically if it meets a plane at a constant angle.

Theorem 1. Let $\Sigma \subset \mathbf{R}^{3}$ be a minimal surface with nonempty boundary $\partial \Sigma$ and let Π be a plane. Suppose that $L \subset \Sigma \cap \Pi$ is a C^{1} curve, Σ is C^{1} along L, and at all points of L the tangent plane to Σ makes a fixed angle $0<\theta<90^{\circ}$ with Π. Then Σ can be analytically extended across L to a minimal surface $\bar{\Sigma}$ satisfying the following properties:
(i) $\bar{\Sigma}=\Sigma \cup \Sigma^{*}$, where Σ^{*} is the set of all images p^{*} of $p \in \Sigma$ under an analytic reflection map $*$.
(ii) p and p^{*} are separated by Π in such a way that

$$
\operatorname{dist}(p, \Pi)=\operatorname{dist}\left(p^{*}, \Pi\right) .
$$

(iii) The Gauss map $g: \bar{\Sigma} \rightarrow \mathbf{C}$ satisfies

$$
\overline{g(p)} \cdot g\left(p^{*}\right)=\left(\tan \frac{\theta}{2}\right)^{-2} .
$$

(iv) $p^{*} \in \Sigma^{*}$ is a branch point (geometric) if and only if $p \in \Sigma$ is.
(v) The map * is a single-valued immersion if Σ is simply connected and L is connected, or Σ is doubly connected and L is closed.
(vi) If * is single-valued, then Σ^{*} has finite total curvature if and only if Σ does.
(vii) If $\partial \Sigma=L$, then $\bar{\Sigma}$ is complete.

Proof. Let x, y, z be coordinates of \mathbf{R}^{3} such that $\Pi=\{(x, y, z)$: $z=0\}$. Since x, y, z are harmonic functions on the minimal surface Σ, one can find conjugate harmonic (possibly multiple-valued)

