ON THE ANALYTIC REFLECTION OF A MINIMAL SURFACE

JAIGYOUNG CHOE

For a long time it has been known that in a Euclidean space one can reflect a minimal surface across a part of its boundary if the boundary contains a line segment, or if the minimal surface meets a plane orthogonally along the boundary. The proof of this fact makes use of H. A. Schwarz's reflection principle for harmonic functions.

In this paper we show that a minimal surface, as a conformal and harmonic map from a Riemann surface into \mathbb{R}^3 , can also be reflected analytically if it meets a plane at a constant angle.

THEOREM 1. Let $\Sigma \subset \mathbf{R}^3$ be a minimal surface with nonempty boundary $\partial \Sigma$ and let Π be a plane. Suppose that $L \subset \Sigma \cap \Pi$ is a C^1 curve, Σ is C^1 along L, and at all points of L the tangent plane to Σ makes a fixed angle $0 < \theta < 90^\circ$ with Π . Then Σ can be analytically extended across L to a minimal surface $\overline{\Sigma}$ satisfying the following properties:

(i) $\overline{\Sigma} = \Sigma \cup \Sigma^*$, where Σ^* is the set of all images p^* of $p \in \Sigma$ under an analytic reflection map *.

(ii) p and p^* are separated by Π in such a way that

 $\operatorname{dist}(p, \Pi) = \operatorname{dist}(p^*, \Pi).$

(iii) The Gauss map $g: \overline{\Sigma} \to \mathbf{C}$ satisfies

$$\overline{g(p)} \cdot g(p^*) = \left(\tan\frac{\theta}{2}\right)^{-2}.$$

(iv) $p^* \in \Sigma^*$ is a branch point (geometric) if and only if $p \in \Sigma$ is.

(v) The map * is a single-valued immersion if Σ is simply connected and L is connected, or Σ is doubly connected and L is closed.

(vi) If * is single-valued, then Σ^* has finite total curvature if and only if Σ does.

(vii) If $\partial \Sigma = L$, then $\overline{\Sigma}$ is complete.

Proof. Let x, y, z be coordinates of \mathbb{R}^3 such that $\Pi = \{(x, y, z): z = 0\}$. Since x, y, z are harmonic functions on the minimal surface Σ , one can find conjugate harmonic (possibly multiple-valued)