PSEUDO REGULAR ELEMENTS AND
 THE AUXILIARY MULTIPLICATION THEY INDUCE

B. E. Johnson

Abstract

An element f of a commutative Banach algebra is pseudo regular if there is a constant M with $\|a b f\| \leq M\|a f\|\|b f\| \quad(a, b \in \mathfrak{A})$. In many cases pseudo regularity implies formally stronger conditions such as relative invertibility; that is, f is invertible in some subalgebra of \mathfrak{A}. In this paper we describe some algebraic methods which can be used to establish results of this kind. Given a pseudo regular element f of $\mathfrak{A}, a f \circ b f=a b f$ extends by continuity to a multiplication \circ, called the auxiliary multiplication, on J, the closed ideal generated by f. This leads to the fundamental inequality $\|\phi\|_{J^{*}} \leq M|\phi(f)|$ where ϕ is a multiplicative linear functional on \mathfrak{A}. As applications of these ideas we identify the pseudo regular elements of the algebra $C^{(n)}[0,1]$ as being the elements such that $f, f^{\prime}, \ldots, f^{(n)}$ have no common zeros and the pseudo regular elements of the group algebra of a locally compact abelian group as being the relatively invertible elements. Similar constructions can be made when f is an element of an \mathfrak{A} module \mathfrak{X} though the structure is less rich in this case.

1. Introduction. The idea of pseudo regularity was introduced by Arens in [1] where he first proved results of the kind in this paper. The definition of auxiliary multiplication is given in $\S 2$. The product $j \circ k$ is, heuristically, $j k / f$ and this is made precise in Proposition 2.4 and Corollary 2.5. The fundamental inequality is proved in $\S 3$ where the equivalence of pseudo regularity and relative invertibility also appears (Corollary 3.6). The two remaining sections deal with pseudo regularity of an element f of an \mathfrak{A} module \mathfrak{X} (§4) and of a system (§5). In $\S 5$ we show that a system $F=\left(f_{1}, \ldots, f_{n}\right) \in$ \mathfrak{A}^{n} where \mathfrak{A} is a uniform algebra is pseudo regular if and only if $(0, \ldots, 0)$ is an isolated point of $\left\{\left(\phi\left(f_{1}\right), \ldots, \phi\left(f_{n}\right)\right), \phi \in \partial \mathfrak{A}\right\} \cup$ $\{(0, \ldots, 0)\}$ where $\partial \mathfrak{A}$ is the Silov boundary of \mathfrak{A}. This extends a result in [1] for the case $n=1$.

The author is indebted to Professor Arens for letting him have a copy of an early version of [1].
2. The auxiliary multiplication generated by a pseudo regular element. Let \mathfrak{A} be a commutative Banach algebra and let $f \in \mathfrak{A}$. We

