L^p-INTEGRABILITY OF THE SECOND ORDER DERIVATIVES OF GREEN POTENTIALS IN CONVEX DOMAINS

VILHELM ADOLFSSON

We give estimates in L^p , 1 , of the second order deriva $tives of the Green potential of <math>f \in L^p$, for convex domains. This is done by interpolating between estimates in L^1 and L^2 of functions in atomic H^1 and L^2 , respectively. The crucial step is obtaining the atomic estimate which is done by adapting to the present situation, a technique introduced by Dahlberg and Kenig.

0. Introduction. The purpose of this paper is to prove that for a convex domain Ω in \mathbb{R}^n , the second order derivatives of the Green potential of f, $\nabla_2 G f$, are in $L^p(\Omega)$ if $f \in L^p(\Omega)$ with $1 . To avoid technicalities we assume throughout the paper that <math>n \ge 3$. The main results of the paper are

THEOREM 1. Suppose D is a convex domain above a Lipschitz graph in \mathbb{R}^n , i.e., $D = \{x_n > \varphi(x')\}$ where φ is a convex Lipschitz function with Lipschitz constant bounded by M and $x' \in \mathbb{R}^{n-1}$. Let G be the Green function for D and let the Green potential for $f \in L^p(D)$, 1 , be denoted by <math>Gf. Then we have that

$$\int_D |\nabla_2 Gf|^p \, dx \le c \int_D |f|^p \, dx \, ,$$

where ∇_2 denotes the second order derivatives and the constant *c* only depends on the Lipschitz constant *M*.

Via a patching argument we will derive the case of a bounded convex domain from the results of Theorem 1.

THEOREM 2. Let Ω be an open, bounded and convex domain in \mathbb{R}^n , $n \geq 3$. Let G be its Green function. Suppose $1 . Then <math>\nabla_2 G f \in L^p(\Omega)$ and

$$\int_{\Omega} |\nabla_2 G f|^p dx \le C \int_{\Omega} |f|^p dx \,,$$