THE MODULI OF RATIONAL WEIERSTRASS FIBRATIONS OVER \mathbf{P}^{1} : SINGULARITIES

Pablo Lejarraga

Abstract

The Weierstrass equation $y^{2}=x^{3}+a x+b$, where a and b are rational functions of one variable, defines a fibration over \mathbf{P}^{1}, which we call a Weierstrass fibration. We consider the moduli space W of rational Weierstrass fibrations over \mathbf{P}^{1}. In this paper we determine the singular locus of W and we compute the general singularities. We work over C, but it seems possible to generalize our methods to characteristic $p \neq 2,3$.

Introduction. In [Mi] Miranda has constructed moduli spaces W_{N}, $N \geq 0$, for Weierstrass fibrations over \mathbf{P}^{1} whose zero section has self intersection number $-N$ in the associated elliptic surface. Seiler has generalized and extended this work in [Sei2] and [Sei3]. For $N=1$, we have the moduli space of rational fibrations $W=W_{1}$. The points of W parametrize isomorphism classes of rational Weierstrass fibrations over \mathbf{P}^{1} with at most rational double point singularities whose associated elliptic surface ($=$ minimal resolution of singularities) has only reduced fibers. By passing to the associated elliptic surface, W can be viewed as parametrizing isomorphism classes of relatively minimal elliptic surfaces over \mathbf{P}^{1} admitting a section which have only reduced fibers. The basic definitions and constructions are reviewed in $\S 1$.

To determine the singular locus of W, we first find the locus S of Weierstrass fibrations that have non-negligible (= nontrivial) automorphisms. By means of the Weierstrass equation, this boils down to finding stable pairs of Weierstrass coefficients whose isotropy group with respect to the action of $G=\mathbf{G L}_{2} / \pm I$ is nontrivial. This work is the content of $\S 2$ and culminates in Theorem 1 where the 7 irreducible components of S are listed.

The general singularities turn out to be cyclic quotient singularities. We compute and classify them with the help of the slice theorem and work of Prill $[\mathbf{P r}]$ in Theorem 2, $\S 3$.

This work is part of my Ph.D. thesis. I want to thank my advisor M. Artin and Rick Miranda for their help.

