COMMUTATIVITY OF SELFADJOINT OPERATORS

MITSURU UCHIYAMA

Nonnegative bounded operators A and B on a Hilbert space \mathcal{H} commute if $AB^n + B^n A \ge 0$ for n = 1, 3, ...,, or if $e^{tA} \le e^{tA+sB} \le e^{tA+s\|B\|}$ for every s, t > 0.

In this paper A and B represent (not necessarily bounded) selfadjoint operators with spectral families $\{E_{\lambda}\}$ and $\{F_{\lambda}\}$, respectively, on a Hilbert space \mathcal{H} . We study some conditions which imply that A and B commute.

1. In general, AB + BA is not necessarily nonnegative for some nonnegative operators A and B (cf. [3]).

THEOREM 1. Let A and B be nonnegative and bounded operators. Then AB = BA if and only if

$$0 \le AB^n + B^n A$$
 for $n = 1, 2, ...$

To prove this theorem, we need the following:

LEMMA. If a projection P satisfies $0 \le AP + PA$, then AP = PA.

Proof. For arbitrary vectors $x \in P\mathcal{H}$, $y \in (1-P)\mathcal{H}$, and arbitrary complex numbers s and t, we have

$$0 \le \left((AP + PA)(tx + sy), (tx + sy) \right)$$

= $2|t|^2 (Ax, x) + 2 \operatorname{Re} t\overline{s}(Ax, y),$

from which it follows that 0 = (Ax, y). Thus we get AP = PA.

Proof of Theorem 1. The "only if" part is clear, so we show the "if" part. We may assume that $||B|| \le 1$, which means $0 \le B \le 1$. Since $0 \le AB^n + B^nA$, we get

(1)
$$0 \le A \exp(tB) + \exp(tB)A$$
 for every $t > 0$,

from which it follows that

$$0 \le \exp(-tB)A + A\exp(-tB).$$