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REFLEXIVITY OF SUBNORMAL OPERATORS

JOHN E. MCCARTHY

Dedicated to Donald Sarason, in admiration of the range of his pioneering work

We give a new proof that subnormal operators are reflexive. We
extend this to certain subnormal n-tuples. We give the first complete
proof that a pair of doubly commuting isometries is reflexive.

0. Introduction. Let A be a weakly closed algebra of bounded linear
operators on a Hubert space %?. Its lattice, Lat(^4), is the set of all
closed subspaces of %f that are left invariant by every element of A.
The set of operators that leave invariant every space in Lat(A) is de-
noted AlgLat(^). The algebra A is called reflexive if A = AlgLat(^).
An operator (or set of operators) T is called reflexive if the weakly
closed unital algebra it generates, W(T), is reflexive.

D. Sarason proved that normal operators are reflexive, and that
so are analytic Toeplitz operators [Sal]. R. Olin and J. Thomson
extended this result in 1979 to prove that all subnormal operators (i.e.
restrictions of normal operators to invariant subspaces) are reflexive
[OT]. Whilst their original proof has been somewhat simplified since
then [Thl], [Th2], [Col], to date all proofs have relied on an elaborate
construction of "full analytic subspaces". We show that Thomson's
work on bounded point evaluations [Th3] allows a much simpler proof
(Theorem 1).

An n-tuple of operators N = (N\, . . . , Nn) is called normal if
each Ni is normal, and N(Nj = NjNt for all i,j. The TZ-tuple
S = (S\, . . . , Sn) of operators on %? is called subnormal if there is a
Hubert space X containing %f, and a normal n-tuple (N\, . . . , Nn)
on Jf, such that each Ni leaves %? invariant, and N^# = 5/. Just
as in the cyclic case, a subnormal n-tuple is reflexive if its restriction
to every cyclic subspace is. Moreover, any cyclic subnormal tf-tuple is
unitarily equivalent to {MZχ, . . . , AfzJ on P2(μ) for some compactly
supported measure μ on Cn (see §2). So studying reflexivity reduces
to studying the spaces P2(μ) and the n-tuple Sμ of multiplication by
the variables.

A point λ in C is called a bounded point evaluation for P2(μ) if the
functional of evaluating at λ, defined on the polynomials, is bounded
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