REFLEXIVITY OF SUBNORMAL OPERATORS

JOHN E. MCCARTHY

Dedicated to Donald Sarason, in admiration of the range of his pioneering work

We give a new proof that subnormal operators are reflexive. We extend this to certain subnormal n-tuples. We give the first complete proof that a pair of doubly commuting isometries is reflexive.

0. Introduction. Let A be a weakly closed algebra of bounded linear operators on a Hilbert space \mathcal{H} . Its lattice, Lat(A), is the set of all closed subspaces of \mathcal{H} that are left invariant by every element of A. The set of operators that leave invariant every space in Lat(A) is denoted Alg Lat(A). The algebra A is called *reflexive* if A = Alg Lat(A). An operator (or set of operators) T is called reflexive if the weakly closed unital algebra it generates, W(T), is reflexive.

D. Sarason proved that normal operators are reflexive, and that so are analytic Toeplitz operators [Sa1]. R. Olin and J. Thomson extended this result in 1979 to prove that all subnormal operators (i.e. restrictions of normal operators to invariant subspaces) are reflexive [OT]. Whilst their original proof has been somewhat simplified since then [Th1], [Th2], [Co1], to date all proofs have relied on an elaborate construction of "full analytic subspaces". We show that Thomson's work on bounded point evaluations [Th3] allows a much simpler proof (Theorem 1).

An *n*-tuple of operators $N = (N_1, \ldots, N_n)$ is called *normal* if each N_i is normal, and $N_iN_j = N_jN_i$ for all i, j. The *n*-tuple $S = (S_1, \ldots, S_n)$ of operators on \mathscr{H} is called *subnormal* if there is a Hilbert space \mathscr{H} containing \mathscr{H} , and a normal *n*-tuple (N_1, \ldots, N_n) on \mathscr{H} , such that each N_i leaves \mathscr{H} invariant, and $N_i|_{\mathscr{H}} = S_i$. Just as in the cyclic case, a subnormal *n*-tuple is reflexive if its restriction to every cyclic subspace is. Moreover, any cyclic subnormal *n*-tuple is unitarily equivalent to $(M_{Z_1}, \ldots, M_{Z_n})$ on $P^2(\mu)$ for some compactly supported measure μ on \mathbb{C}^n (see §2). So studying reflexivity reduces to studying the spaces $P^2(\mu)$ and the *n*-tuple S_{μ} of multiplication by the variables.

A point λ in \mathbb{C} is called a *bounded point evaluation* for $P^2(\mu)$ if the functional of evaluating at λ , defined on the polynomials, is bounded