JORDAN ANALOGS OF THE BURNSIDE AND JACOBSON DENSITY THEOREMS

L. Grunenfelder, M. Olmladič and H. Radjavi

Abstract

If \mathscr{A} is an (associative) algebra of linear operators on a vector space, it is well known that 2-transitivity for \mathscr{A} implies density and, in certain situations, transitivity guarantees 2-transitivity. In this paper we consider analogs of these results for Jordan algebras of linear operators with the standard Jordan product.

0. Introduction. Let $\mathscr{L}(\mathscr{V})$ be the algebra of all linear operators on a vector space \mathscr{V} over the field \mathbb{F}. A subset \mathscr{S} of $\mathscr{L}(\mathscr{V})$ is called transitive if $\mathscr{S}_{x}=\mathscr{V}$ for every nonzero x in \mathscr{V}. More generally, \mathscr{S} is called k-transitive if given linearly independent vectors $x_{1}, x_{2}, \ldots, x_{k}$ and arbitrary vectors $y_{1}, y_{2}, \ldots, y_{k}$ in \mathscr{V} there exists a member S of \mathscr{S} such that $S x_{i}=y_{i}, i=1,2, \ldots, k$. If \mathscr{S} is k-transitive for every k, then it is called (strictly) dense. It is a remarkable fact due to Jacobson [2] that if \mathscr{S} is an (associative) subalgebra of $\mathscr{L}(\mathscr{V})$, then 2-transitivity implies density for arbitrary \mathbb{F}. In particular, if \mathscr{V} is finite-dimensional, then $\mathscr{L}(\mathscr{V})$ is the only 2-transitive algebra on \mathscr{V}. There are transitive algebras that are not 2 -transitive even if \mathbb{F} is algebraically closed. In the presence of certain conditions (e.g., topological) transitivity implies density. The most well-known result of this kind is Burnside's theorem [3]: if \mathscr{V} is finite-dimensional and \mathbb{F} is algebraically closed, then the only transitive algebra over \mathscr{V} is $\mathscr{L}(\mathscr{V})$.

In this paper we consider analogs of these results for Jordan algebras of operators: linear spaces \mathscr{A} of operators such that A^{2} and $A B A$ belong to \mathscr{A} for all A and B in \mathscr{A}. If the characteristic of the field \mathbb{F} is different from 2, this is equivalent to the requirement that \mathscr{A} be closed under the Jordan bracket $\{A, B\}=A B+B A$. Over this kind of field a Jordan algebra \mathscr{A} may be equivalently defined as a linear space closed under taking positive integral powers. For the sake of completeness we include proofs of a few elementary facts obtainable from the general theory of Jordan algebras [4].

In what follows we often find it convenient to view members of $\mathscr{L}(\mathscr{V})$ as matrices over \mathbb{F}; this should cause no confusion. The set

