JORDAN ANALOGS OF THE BURNSIDE AND JACOBSON DENSITY THEOREMS

L. GRUNENFELDER, M. OLMLADIČ AND H. RADJAVI

If \mathscr{A} is an (associative) algebra of linear operators on a vector space, it is well known that 2-transitivity for \mathscr{A} implies density and, in certain situations, transitivity guarantees 2-transitivity. In this paper we consider analogs of these results for Jordan algebras of linear operators with the standard Jordan product.

0. Introduction. Let $\mathscr{L}(\mathscr{V})$ be the algebra of all linear operators on a vector space \mathcal{V} over the field \mathbb{F} . A subset \mathcal{S} of $\mathcal{L}(\mathcal{V})$ is called transitive if $\mathscr{S}x = \mathscr{V}$ for every nonzero x in \mathscr{V} . More generally, \mathcal{S} is called k-transitive if given linearly independent vectors x_1, x_2, \ldots, x_k and arbitrary vectors y_1, y_2, \ldots, y_k in \mathcal{V} there exists a member S of \mathcal{S} such that $Sx_i = y_i, i = 1, 2, ..., k$. If \mathcal{S} is k-transitive for every k, then it is called (strictly) dense. It is a remarkable fact due to Jacobson [2] that if \mathcal{S} is an (associative) subalgebra of $\mathscr{L}(\mathscr{V})$, then 2-transitivity implies density for arbitrary **F**. In particular, if \mathscr{V} is finite-dimensional, then $\mathscr{L}(\mathscr{V})$ is the only 2-transitive algebra on \mathcal{V} . There are transitive algebras that are not 2-transitive even if \mathbb{F} is algebraically closed. In the presence of certain conditions (e.g., topological) transitivity implies density. The most well-known result of this kind is Burnside's theorem [3]: if \mathscr{V} is finite-dimensional and \mathbb{F} is algebraically closed, then the only transitive algebra over \mathscr{V} is $\mathscr{L}(\mathscr{V})$.

In this paper we consider analogs of these results for Jordan algebras of operators: linear spaces \mathscr{A} of operators such that A^2 and ABAbelong to \mathscr{A} for all A and B in \mathscr{A} . If the characteristic of the field \mathbb{F} is different from 2, this is equivalent to the requirement that \mathscr{A} be closed under the Jordan bracket $\{A, B\} = AB + BA$. Over this kind of field a Jordan algebra \mathscr{A} may be equivalently defined as a linear space closed under taking positive integral powers. For the sake of completeness we include proofs of a few elementary facts obtainable from the general theory of Jordan algebras [4].

In what follows we often find it convenient to view members of $\mathscr{L}(\mathscr{V})$ as matrices over \mathbb{F} ; this should cause no confusion. The set