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JORDAN ANALOGS OF THE BURNSIDE
AND JACOBSON DENSITY THEOREMS

L. GRUNENFELDER, M. OLMLADIC AND H. RADJAVI

If sf is an (associative) algebra of linear operators on a vector
space, it is well known that 2-transitivity for J / implies density and,
in certain situations, transitivity guarantees 2-transitivity. In this
paper we consider analogs of these results for Jordan algebras of
linear operators with the standard Jordan product.

0. Introduction. Let ^{cPr) be the algebra of all linear operators
on a vector space Ψ* over the field F. A subset S? of ^{T') is
called transitive if S?x = *V for every nonzero x in Ψ*. More gen-
erally, S? is called ^-transitive if given linearly independent vectors
X\, X2, . . . , Xk and arbitrary vectors y\, yi, . . . , y^ in "V there ex-
ists a member S of S? such that Sxi — yx 9 i = 1, 2, . . . , k. If
5? is ^-transitive for every k, then it is called (strictly) dense. It is
a remarkable fact due to Jacobson [2] that if S? is an (associative)
subalgebra of S?^), then 2-transitivity implies density for arbitrary
F. In particular, if "V is finite-dimensional, then 2"^) is the only
2-transitive algebra on 2^. There are transitive algebras that are not
2-transitive even if F is algebraically closed. In the presence of cer-
tain conditions (e.g., topological) transitivity implies density. The
most well-known result of this kind is Burnside's theorem [3]: if Ψ*
is finite-dimensional and F is algebraically closed, then the only tran-
sitive algebra over "V is t2

p{c^r).
In this paper we consider analogs of these results for Jordan algebras

of operators: linear spaces si of operators such that A2 and ABA
belong to sf for all A and B in $f . If the characteristic of the field
F is different from 2, this is equivalent to the requirement that si be
closed under the Jordan bracket {A, B} = AB + BA. Over this kind
of field a Jordan algebra si may be equivalently defined as a linear
space closed under taking positive integral powers. For the sake of
completeness we include proofs of a few elementary facts obtainable
from the general theory of Jordan algebras [4].

In what follows we often find it convenient to view members of
as matrices over F; this should cause no confusion. The set
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