DIAGONALIZING HILBERT CUSP FORMS

Timothy W. Atwill

Abstract

We develop an operator $C_{\mathfrak{q}}\left(\Psi_{\mathcal{Q}}\right)$ on the space $\mathcal{S}_{k}(\mathcal{N}, \Psi)$ of Hilbert cuspforms as an alternative to the Hecke operator $T_{\mathfrak{q}}$ for primes \mathfrak{q} dividing \mathcal{N}. For $\mathbf{f} \in \mathcal{S}_{k}(\mathcal{N}, \Psi)$ a newform, we have $\mathbf{f}\left|C_{q}\left(\Psi_{\mathcal{Q}}\right)=\mathbf{f}\right| T_{q}$. We are able to decompose the space $\mathcal{S}_{k}(\mathcal{N}, \Psi)$ into a direct sum of common eigenspaces of $\left\{T_{\mathfrak{p}}, C_{\mathfrak{q}}\left(\Psi_{\mathcal{Q}}\right): \mathfrak{p} \nmid \mathcal{N}, \mathfrak{q} \mid \mathcal{N}\right\}$, each of dimension one. Each common eigenspace is spanned by an element with the property that its eigenvalue with respect to $T_{\mathfrak{p}}$ (resp. $C_{\mathfrak{q}}\left(\Psi_{\mathcal{Q}}\right)$) is its $\mathfrak{p}^{\text {th }}$ (resp $\left.\mathfrak{q}^{\text {th }}\right)$ Fourier coefficient. We finish by deriving bounds for the eigenvalues of $C_{q}\left(\Psi_{\mathcal{Q}}\right)$.

Introduction. Let $\mathcal{S}_{k}(\mathcal{N}, \Psi)$ denote the space of Hilbert cusp forms of Hecke character Ψ. Shemanske and Walling [7] characterized the newform theory for $\mathcal{S}_{k}(\mathcal{N}, \Psi)$ which is analogous to that derived in [1] for the elliptic modular case. They decompose the space $\mathcal{S}_{k}(\mathcal{N}, \Psi)$ into a direct sum of common eigenspaces for the Hecke operators $\left\{T_{\mathfrak{p}}: \mathfrak{p} \nmid \mathcal{N}\right\}$. The non-zero elements of the one-dimensional common eigenspaces are called newforms, and a newform can be normalized such that its $\mathfrak{p}^{\text {th }}$ Fourier coefficient is equal to its eigenvalue for T_{p}. They also show that each common eigenspace of $\left\{\dot{T}_{\mathfrak{p}}: \mathfrak{p} \nmid \mathcal{N}\right\}$ has a basis of the form $\left\{\mathbf{g} \mid B_{\mathfrak{L}}: \mathbf{g} \in\right.$ $\mathcal{S}_{k}(\mathcal{M}, \Psi)$ a newform, $\left.\mathcal{M}|\mathcal{N}, \mathfrak{L}| \mathcal{N M}^{-1}\right\}$. While the Hecke operators $\left\{T_{\mathfrak{q}}: \mathfrak{q} \mid \mathcal{N}\right\}$ act invariantly on these eigenspaces, there generally does not exist a basis for these eigenspaces which consists of eigenforms for $\left\{T_{\mathfrak{q}}: \mathfrak{q} \mid \mathcal{N}\right\}$.

In this work, we resolve this particular difficulty by replacing T_{q}, $\mathfrak{q} \mid \mathcal{N}$ by the operator $C_{\mathfrak{q}}\left(\Psi_{\mathcal{Q}}\right)$. It is defined using the Hecke operator T_{q} and the Hilbert analog of the Atkin-Lehner W_{Q} operator of [7], and hence depends upon a choice of Hecke character $\Psi_{\mathcal{Q}}$. We are able to diagonalize the space $\mathcal{S}_{k}(\mathcal{N}, \Psi)$ with respect to the family $\left\{T_{\mathfrak{p}}, C_{\mathfrak{q}}\left(\Psi_{\mathcal{Q}}\right): \mathfrak{p} \nmid \mathcal{N}, \mathfrak{q} \mid \mathcal{N}\right\}$. Further, we are able to establish that each common eigenspace is one-dimensional and is spanned by a form whose $\mathfrak{p t h}$ (resp $\mathfrak{q}^{\text {th }}$) Fourier coefficient is its eigenvalue with

