DIAGONALIZING HILBERT CUSP FORMS

TIMOTHY W. ATWILL

We develop an operator $C_{\mathfrak{q}}(\Psi_{\mathcal{Q}})$ on the space $\mathcal{S}_k(\mathcal{N},\Psi)$ of Hilbert cuspforms as an alternative to the Hecke operator $T_{\mathfrak{q}}$ for primes \mathfrak{q} dividing \mathcal{N} . For $\mathbf{f} \in \mathcal{S}_k(\mathcal{N},\Psi)$ a newform, we have $\mathbf{f} \mid C_{\mathfrak{q}}(\Psi_{\mathcal{Q}}) = \mathbf{f} \mid T_{\mathfrak{q}}$. We are able to decompose the space $\mathcal{S}_k(\mathcal{N},\Psi)$ into a direct sum of common eigenspaces of $\{T_{\mathfrak{p}}, \ C_{\mathfrak{q}}(\Psi_{\mathcal{Q}}): \ \mathfrak{p} \nmid \mathcal{N}, \ \mathfrak{q} \mid \mathcal{N}\}$, each of dimension one. Each common eigenspace is spanned by an element with the property that its eigenvalue with respect to $T_{\mathfrak{p}}$ (resp. $C_{\mathfrak{q}}(\Psi_{\mathcal{Q}})$) is its \mathfrak{p}^{th} (resp \mathfrak{q}^{th}) Fourier coefficient. We finish by deriving bounds for the eigenvalues of $C_{\mathfrak{q}}(\Psi_{\mathcal{Q}})$.

Introduction. Let $S_k(\mathcal{N}, \Psi)$ denote the space of Hilbert cusp forms of Hecke character Ψ . Shemanske and Walling [7] characterized the newform theory for $S_k(\mathcal{N}, \Psi)$ which is analogous to that derived in [1] for the elliptic modular case. They decompose the space $S_k(\mathcal{N}, \Psi)$ into a direct sum of common eigenspaces for the Hecke operators $\{T_{\mathfrak{p}}: \mathfrak{p} \nmid \mathcal{N}\}$. The non-zero elements of the one-dimensional common eigenspaces are called newforms, and a newform can be normalized such that its \mathfrak{p}^{th} Fourier coefficient is equal to its eigenvalue for $T_{\mathfrak{p}}$. They also show that each common eigenspace of $\{\hat{T}_{\mathfrak{p}}: \mathfrak{p} \nmid \mathcal{N}\}$ has a basis of the form $\{\mathbf{g} \mid B_{\mathfrak{L}}: \mathbf{g} \in S_k(\mathcal{M}, \Psi) \text{ a newform }, \mathcal{M} \mid \mathcal{N}, \mathfrak{L} \mid \mathcal{N}\mathcal{M}^{-1}\}$. While the Hecke operators $\{T_{\mathfrak{q}}: \mathfrak{q} \mid \mathcal{N}\}$ act invariantly on these eigenspaces, there generally does not exist a basis for these eigenspaces which consists of eigenforms for $\{T_{\mathfrak{q}}: \mathfrak{q} \mid \mathcal{N}\}$.

In this work, we resolve this particular difficulty by replacing $T_{\mathfrak{q}}$, $\mathfrak{q} \mid \mathcal{N}$ by the operator $C_{\mathfrak{q}}(\Psi_{\mathcal{Q}})$. It is defined using the Hecke operator $T_{\mathfrak{q}}$ and the Hilbert analog of the Atkin-Lehner $W_{\mathcal{Q}}$ operator of [7], and hence depends upon a choice of Hecke character $\Psi_{\mathcal{Q}}$. We are able to diagonalize the space $\mathcal{S}_k(\mathcal{N}, \Psi)$ with respect to the family $\{T_{\mathfrak{p}}, C_{\mathfrak{q}}(\Psi_{\mathcal{Q}}) : \mathfrak{p} \nmid \mathcal{N}, \mathfrak{q} \mid \mathcal{N}\}$. Further, we are able to establish that each common eigenspace is one-dimensional and is spanned by a form whose \mathfrak{p} th (resp \mathfrak{q}^{th}) Fourier coefficient is its eigenvalue with