MOON HYPERSURFACES AND SOME RELATED EXISTENCE RESULTS OF CAPILLARY HYPERSURFACES WITHOUT GRAVITY AND OF ROTATIONAL SYMMETRY

Fei-tsen Liang

Let $\Omega_*(R)$ be a domain in \mathbb{R}^n bounded by two spherical caps Σ_1 and Σ_2 of respective radii $\frac{n-1}{n}$ and R, with $\frac{n-1}{n} < R < 1$. (cf. Figure 1 for n = 3). We consider the vertical cylinder Z over $\partial \Omega_*(R)$ and seek a hypersurface $u_R(x_1, \ldots, x_n)$ over $\Omega_*(R)$ of constant mean curvature $H \equiv 1$ which meets Z in the angle π (vertically downward) over $\Sigma_1(R)$ and the angle 0 (vertically upward) over $\Sigma_2(R)$; intuitively and essentially, this amounts to seeking a solution to the problem

(0.1)
$$\begin{cases} \operatorname{div} Tu_R = n \\ \nu \cdot Tu_R = \begin{cases} -1 & \text{ on } \Sigma_1(R) \\ 1 & \text{ on } \Sigma_2(R), \end{cases}$$

 ν being outward unit normal.

0. Introduction.

In view of the shape of the base domain $\Omega_*(R)$, we shall, as in [FG] for n = 2, refer to $\Omega_*(R)$ as *n*-dimensional moon domains and as in [F2], refer to the solution of (0.1) as moon (hyper)-surfaces. Such a moon surface (n = 2) is chosen to majorize the gradient of solution u(x) of

$$\dim Tu = 2$$

in $B_R, R_0^{(2)} < R < 1$, with $R_0^{(2)} = 0.565406...$ being the unique value of R for which $\Sigma_1(R)$ passes through the center of the circle including $\Sigma_2(R)$. This enables us to show the existence of apriori gradient bounds for solution of the equation (0.2) in $B_R, R_0^{(2)} < R < 1$, in [**FG**].

0.1. We note that, an integration of (0.1) over the section $\Omega_*(R)$ yields

(0.3)
$$|\Sigma_2(R)| - |\Sigma_1(R)| = n |\Omega_*(R)|.$$

Thus, the condition (0.3) is necessary for existence of the moon hypersurfaces u_R .