MOON HYPERSURFACES AND SOME RELATED EXISTENCE RESULTS OF CAPILLARY HYPERSURFACES WITHOUT GRAVITY AND OF ROTATIONAL SYMMETRY

Fei-tsen Liang

Let $\Omega_{*}(R)$ be a domain in \mathbb{R}^{n} bounded by two spherical caps Σ_{1} and Σ_{2} of respective radii $\frac{n-1}{n}$ and R, with $\frac{n-1}{n}<R<1$. (cf. Figure 1 for $n=3$). We consider the vertical cylinder Z over $\partial \Omega_{*}(R)$ and seek a hypersurface $u_{R}\left(x_{1}, \ldots, x_{n}\right)$ over $\Omega_{*}(R)$ of constant mean curvature $H \equiv 1$ which meets Z in the angle π (vertically downward) over $\Sigma_{1}(R)$ and the angle 0 (vertically upward) over $\Sigma_{2}(R)$; intuitively and essentially, this amounts to seeking a solution to the problem

$$
\left\{\begin{array}{l}
\operatorname{div} T u_{R}=n \tag{0.1}\\
\nu \cdot T u_{R}= \begin{cases}-1 & \text { on } \Sigma_{1}(R) \\
1 & \text { on } \Sigma_{2}(R)\end{cases}
\end{array}\right.
$$

ν being outward unit normal.

0. Introduction.

In view of the shape of the base domain $\Omega_{*}(R)$, we shall, as in [FG] for $n=2$, refer to $\Omega_{*}(R)$ as n-dimensional moon domains and as in [F2], refer to the solution of (0.1) as moon (hyper)-surfaces. Such a moon surface ($n=2$) is chosen to majorize the gradient of solution $u(x)$ of

$$
\begin{equation*}
\operatorname{div} T u=2 \tag{0.2}
\end{equation*}
$$

in $B_{R}, R_{0}^{(2)}<R<1$, with $R_{0}^{(2)}=0.565406 \ldots$ being the unique value of R for which $\Sigma_{1}(R)$ passes through the center of the circle including $\Sigma_{2}(R)$. This enables us to show the existence of apriori gradient bounds for solution of the equation (0.2) in $B_{R}, R_{0}^{(2)}<R<1$, in [FG].
0.1. We note that, an integration of (0.1) over the section $\Omega_{*}(R)$ yields

$$
\begin{equation*}
\left|\Sigma_{2}(R)\right|-\left|\Sigma_{1}(R)\right|=n\left|\Omega_{*}(R)\right| \tag{0.3}
\end{equation*}
$$

Thus, the condition (0.3) is necessary for existence of the moon hypersurfaces u_{R}.

