THE WEIL REPRESENTATION AND GAUSS SUMS

Antonia Bluher

We use the Weil representation to evaluate certain Gauss sums over a local field, up to ± 1 . Also we construct a cocycle on $\operatorname{Sp}(2m, \mathbb{R})$ with a simple formula on the maximal compact torus and we show how to lift homomorphisms $j : \operatorname{Sp}(2n, \mathbb{R}) \to$ $\operatorname{Sp}(2m, \mathbb{R})$ to the double covers of these groups.

1. Introduction.

Let F be a self-dual local field of char $\neq 2$, for instance $F = \mathbb{R}$, \mathbb{C} , or a finite extension of \mathbb{Q}_p . For most of the paper we will assume $F \neq \mathbb{C}$. Let χ be a nontrivial additive character of F. Then all additive characters of F have the form $\lambda \chi$ for some $\lambda \in F$, where $\lambda \chi(t) = \chi(\lambda t)$. We consider the following unitary operators on $L^2(F^m)$:

(1.1)
$$(\mathbf{a}(A)\Phi)(X) = |\det A|_F^{1/2}\Phi(XA) \quad \text{for } A \in \mathrm{GL}_m(F),$$

(1.2)
$$\mathbf{n}(B)\Phi(X) = \chi(XBX^T/2)\Phi(X)$$
 for $B = B^T \in \mathcal{M}_m(F)$,

(1.3)

$$(\mathcal{F}_j\Phi)(X) = \int_{F^j} \Phi(Y_1,\ldots,Y_j,X_{j+1},\ldots,X_m) \chi(X_1Y_1+\cdots+X_jY_j) \, dY,$$

(1.4)
$$(\iota(t)\Phi)(X) = t\Phi(X), \qquad t \in \mathbf{T} = \{z \in \mathbb{C} \mid z\overline{z} = 1\}.$$

Here Φ is a nice function in $L^2(F^m)$ (to be precise, Φ belongs to the Schwartz space $S(F^m)$), dY is an additive Haar measure on F^j normalized so that $\mathcal{F}_j^2 = \mathbf{a}(\operatorname{diag}\{-I_j, I_{m-j}\})$ for $0 \leq j \leq m$, and $|a|_F$ for $a \in F$ is the modulus function, determined by $d(ya) = |a|_F dy$ for a Haar measure dy on (F, +). All our vectors are row vectors. We will usually suppress the symbol ι ; that is, identify t with $\iota(t)$ for $t \in \mathbf{T}$. Let $\mathrm{Mp} = \mathrm{Mp}(F^m)$ be the topological group generated by all the above operators. We call this the metaplectic group. This group is independent of χ since $\lambda \chi(XBX^T/2) = \chi(X(\lambda B)X^T/2)$ and $\mathbf{a}({\lambda I_j}_{I_{m-j}}))\mathcal{F}_{j,\chi} = \mathcal{F}_{j,\lambda\chi}$, where we have added a subscript to the Fourier