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We introduce the notion of a conditionally free product and
conditionally free convolution. We describe this convolution
both from a combinatorial point of view, by showing its con-
nection with the lattice of non-crossing partitions, and from
an analytic point of view, by presenting the basic formula for
its iΐ-transform. We calculate explicitly the distributions of
the conditionally free Gaussian and conditionally free Poisson
distribution.

1. Introduction.

In [BSp], we introduced a generalization with respect to two states of the
reduced free product of Voiculescu [Voil, VDN] and gave some prelimi-
nary results on this concept. Here, we want to examine this notion more
systematically, in particular, we want to investigate the corresponding con-
volution. We describe this convolution both from a combinatorial point of
view - by showing its connection with the lattice of non-crossing partitions
- and from an analytic point of view - by presenting the basic formula for
its /^-transform, which is the replacement of the classical Fourier-transform.
We calculate explicitly the distributions of the corresponding Gaussian and
Poisson law by a careful examination of the structure of the non-crossing
partitions.

Instead of the terms "^-independence" and "^-product" of [BSp], we will
use here the more precise expressions "conditionally free" and "conditionally
free product", or just the abbreviation "c-free".

Let us start with a motivation for our concept of "c-freeness". Consider
a group G = *i£iGι which is the free product of groups G, (i G /), i.e. each
element g φ e of G can be written uniquely in the form g = gλ .. .gn, where
e φ gj e Gi(j) and i(l) φ i(2) φ -' φ i(n). To see the nature of this
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