AUTOMORPHISM GROUPS OF FINITE SUBGROUPS OF DIVISION RINGS

R. J. Faudree

Abstract

If a finite group G can be embedded in the multiplicative group of a division ring, then G can be embedded in a division ring D generated by G such that any automorphism of G can be uniquely extended to be an automorphism of D. It seems natural then to investigate the relation between the automorphism group of G and the automorphism group of D.

We will prove that the automorphism group of G determines the automorphism group of D modulo the inner-automorphism group of D (i.e. every automorphism of D can be written as a product of an inner-automorphism of D and an automorphism of G). The automorphism group of G does not completely determine the automorphism group of D for the rational quaternions contain an isomorphic copy of Q_{8}, the quaternion group of order 8. There are infinitely many automorphisms of the rational quaternions but the automorphism group of Q_{8} is finite.

Amitsur determined which finite groups can be embedded in a division ring [2]. We will use his conditions, but first some definitions will be given and certain algebraic structures will be discussed.

Let m and r be relatively prime integers, $s=(r-1, m) t=m / s$ and $n=$ minimal integer satisfying $r^{n} \equiv 1(\bmod m)$.

$$
G_{m, r}=G p\left(A, B \mid A^{m}=1, B A B^{-1}=A^{r}, B^{n}=A^{t}\right) .
$$

$\mathfrak{T}, \mathfrak{D}$, and \mathfrak{F} will denote the binary tetrahedral, binary octahedral and binary icosahedral groups.

If ε_{m} is a primitive $m^{\text {th }}$ root of unity and σ_{r} is the automorphism of $Q\left(\varepsilon_{m}\right)$ determined by the map $\varepsilon_{m} \rightarrow \varepsilon_{m}^{r}$, then

$$
\mathfrak{U}_{m, r}=\left(Q\left(\varepsilon_{m}\right), \sigma_{r}, \varepsilon_{m}^{t}\right)
$$

will denote the cyclic algebra determined by the field $Q\left(\varepsilon_{m}\right)$, the automorphism σ_{r} and the element ε_{m}^{t}. The map $A \rightarrow \varepsilon_{m}$ and $B \rightarrow \sigma_{r}$ determines an isomorphic embedding of $G_{m, r}$ into the algebra $\mathfrak{A}_{m, r}$. Under this identification we have

$$
\mathfrak{U}_{m, r}=\left(Q(A), B, A^{t}\right) .
$$

The algebra $\mathfrak{U}_{m, r}$ is a division algebra if and only if $G_{m, r}$ can be embedded in a division ring [2]. The following diagram gives some subalgebras of $\mathfrak{A}_{m, r}$ which will be of importance in this paper. Here $Z_{m, r}$ denotes the center of $\mathfrak{A}_{m, r}$.

