AUTOMORPHISM GROUPS OF FINITE SUBGROUPS OF DIVISION RINGS

R. J. FAUDREE

If a finite group G can be embedded in the multiplicative group of a division ring, then G can be embedded in a division ring D generated by G such that any automorphism of G can be uniquely extended to be an automorphism of D. It seems natural then to investigate the relation between the automorphism group of G and the automorphism group of D.

We will prove that the automorphism group of G determines the automorphism group of D modulo the inner-automorphism group of D (i.e. every automorphism of D can be written as a product of an inner-automorphism of D and an automorphism of G). The automorphism group of G does not completely determine the automorphism group of D for the rational quaternions contain an isomorphic copy of Q_s , the quaternion group of order 8. There are infinitely many automorphisms of the rational quaternions but the automorphism group of Q_s is finite.

Amitsur determined which finite groups can be embedded in a division ring [2]. We will use his conditions, but first some definitions will be given and certain algebraic structures will be discussed.

Let m and r be relatively prime integers, s = (r - 1, m) t = m/sand n =minimal integer satisfying $r^n \equiv 1 \pmod{m}$.

$$G_{m,r} = Gp(A, B \mid A^m = 1, BAB^{-1} = A^r, B^n = A^t)$$
.

 \mathfrak{T} , \mathfrak{O} , and \mathfrak{F} will denote the binary tetrahedral, binary octahedral and binary icosahedral groups.

If ε_m is a primitive m^{th} root of unity and σ_r is the automorphism of $Q(\varepsilon_m)$ determined by the map $\varepsilon_m \to \varepsilon_m^r$, then

$$\mathfrak{A}_{m,r} = (Q(\varepsilon_m), \sigma_r, \varepsilon_m^t)$$

will denote the cyclic algebra determined by the field $Q(\varepsilon_m)$, the automorphism σ_r and the element ε_m^t . The map $A \to \varepsilon_m$ and $B \to \sigma_r$ determines an isomorphic embedding of $G_{m,r}$ into the algebra $\mathfrak{A}_{m,r}$. Under this identification we have

$$\mathfrak{A}_{m,r} = (Q(A), B, A^t)$$
.

The algebra $\mathfrak{A}_{m,r}$ is a division algebra if and only if $G_{m,r}$ can be embedded in a division ring [2]. The following diagram gives some subalgebras of $\mathfrak{A}_{m,r}$ which will be of importance in this paper. Here $Z_{m,r}$ denotes the center of $\mathfrak{A}_{m,r}$.