SEMIGROUPS SATISFYING IDENTITY $x y=f(x, y)$

Takayuki Tamura

Dedicated to Professor Keizo Asano on his Sixtieth Birthday

Abstract

Let $f(x, y)$ be a word of length greater than 2 starting in y and ending in x. The purpose of this paper is to prove that a semigroup satisfies an identity $x y=f(x, y)$ if and only if it is an inflation of a semilattice of groups satisfying the same identity. As its consequence we find a necessary and sufficient condition for $x y=f(x, y)$ to imply commutativity.

Recently E. J. Tully has proved [7] that if a semigroup S satisfies an identity of the form $x y=y^{m} x^{n}$ then S is an inflation of a semilattice of abelian groups G_{α} 's satisfying $x^{k}=1$ for all $x \in G_{\alpha}$ where k is the greatest common divisor of $m-1$ and $n-1$; hence $x y=y^{m} x^{n}$ implies commutativity. This paper is to consider the general case of the right side of $x y=y^{m} x^{n}$ with the left side unchanged.

Let $f(x, y)$ denote a word involving both x and y, and $|f(x, y)|$ be the length of the word $f(x, y):|x|_{f}$ be the number of x 's which appear in $f(x, y) ;|y|_{f}$ be also defined for y. For example if $f(x, y)=x^{3} y^{2} x y$, $|f(x, y)|=7,|x|_{f}=4,|y|_{f}=3$. Throughout this paper we assume $|f(x, y)|>2$, equivalently $|x|_{f}>1$ or $|y|_{f}>1$ or both.

Consider an identity of the form

$$
\begin{equation*}
x y=f(x, y) \tag{1}
\end{equation*}
$$

in semigroups. A question is raised: Under what condition on $f(x, y)$ does (1) imply commutativity $x y=y x$? What we can say immediately is that $f(x, y)$ has to start in y. Because if $f(x, y)$ starts in x, then left zero semigroups of order >1 satisfy (1) but are not commutative. For the similar reason $f(x, y)$ must end in x. From now on we assume $f(x, y)$ in (1) has the form:

$$
\left\{\begin{array}{l}
f(x, y)=y^{m_{1}} x^{n_{1}} \cdots y^{m_{s}} x^{n_{s}}, m_{i}>0, n_{i}>0, i=1, \cdots, s, \tag{2}\\
\text { and }|f(x, y)|>2 .
\end{array}\right.
$$

A semigroup D is called an inflation of a semigroup T if T is a subsemigroup of D and there is a mapping φ of D into T such that

$$
\varphi(x)=x \quad \text { for } x \in T
$$

and

$$
x y=\varphi(x) \varphi(y) \quad \text { for } x, y \in D
$$

Let L be a semilattice. A semigroup S is called a semilattice L of semigroups $S_{\alpha}, \alpha \in L$, if S is a disjoint union of $\left\{S_{\alpha} ; \alpha \in L\right\}$ and

