COVERING SEMIGROUPS

HAROLD DAVID KAHN

A topological semigroup is a Hausdorff space S together with a continuous associative multiplication $m: S \times S \rightarrow S$. The lifting of the group structure of a topological group to its simply connected covering space is a technique used in the theory of Lie groups. In this paper we investigate the lifting of the multiplication of a topological semigroup S to its simply connected covering space (\overline{S}, φ) . A general theory is developed and applications to examples are discussed.

1. Covering spaces. Let \overline{S} and S be locally connected topological spaces and $\varphi: \overline{S} \to S$ a continuous map. If C is a subset of S, then C is evenly covered if $\varphi \mid \overline{C}: \overline{C} \to C$ is a homeomorphism for each component \overline{C} of $\varphi^{-1}(C)$. If each point in S has an evenly covered open neighborhood, then φ is called a covering map. If φ is a covering map and \overline{S} is connected, then (\overline{S}, φ) is called a covering space of S. A covering space is called trivial if the covering map is a homeomorphism, and if S admits only trivial covering spaces, then S is called simply connected. If $(\overline{S}_1, \varphi_1)$ and $(\overline{S}_2, \varphi_2)$ are simply connected covering spaces of S and $\psi: \overline{S}_1 \to \overline{S}_2$ is a homeomorphism such that $\varphi_2 \circ \psi = \varphi_1$, then ψ is called a covering space isomorphism. An automorphism of (\overline{S}, φ) is an isomorphism of (\overline{S}, φ) with itself.

LEMMA 1. Let (\bar{S}, φ) be a covering space of S and T a connected space. If $\alpha, \beta: T \to \bar{S}$ are continuous maps with $\varphi \circ \alpha = \varphi \circ \beta$, then α and β agree everywhere or nowhere.

LEMMA 2. Let P be a topological space. Then P is simply connected if and only if (a) P is connected and locally connected and (b) if $\varphi: \overline{S} \to S$ is a covering map, $\psi: P \to S$ is continuous, p is in P, s is in \overline{S} with $\psi(p) = \varphi(s)$, then there exists unique continuous $\overline{\psi}: P \to \overline{S}$ such that $\psi = \varphi \circ \overline{\psi}$ and $\overline{\psi}(p) = s$.

LEMMA 3. Let (P, ψ) and (\overline{S}, φ) be covering spaces of S with p in P and s in \overline{S} with $\psi(p) = \varphi(s)$. If P is simply connected and $\overline{\psi}: P \to \overline{S}$ is the unique lifting of ψ with $\overline{\psi}(p) = s$, then $\overline{\psi}$ is a covering map.

LEMMA 4. If (\bar{S}_1, φ_1) and (\bar{S}_2, φ_2) are simply connected covering spaces of S and s_i is in \bar{S}_i , i = 1, 2 with $\varphi_1(s_1) = \varphi_2(s_2)$, then there exists a unique covering space isomorphism $\psi: \bar{S}_1 \to \bar{S}_2$ such that $\psi(s_1) = s_2$.