ALGEBRAIC EQUIVALENCE OF LOCALLY NORMAL REPRESENTATIONS

MASAMICHI TAKESAKI

It will be shown that (i) the absolute value of every locally normal linear functional is again locally normal; (ii) two locally normal representations π_1 and π_2 of \mathscr{A} generate isomorphic von Neumann algebras $\mathscr{M}(\pi_1)$ and $\mathscr{M}(\pi_2)$ if and only if there exists an automorphism σ of \mathscr{A} such that $\pi_1 \circ \sigma$ and π_2 are quasi-equivalent, provided that either $\mathscr{M}(\pi_1)$ or $\mathscr{M}(\pi_2)$ is σ finite.

This paper is motivated by a recent work [6] of R. Haag. R. V. Kadison and D. Kastler. As they mentioned, the recent progress in mathematical physics has made a precise analysis of representations of a C^* -algebra furnished with a net of von Neumann algebras a growing necessity.

In the first half of this paper, we shall show that the space of all locally normal linear functionals of a C^* -algebra with a net of von Neumann algebras is a closed invariant subspace of the conjugate space in the sense of [14], which will imply that the absolute value of a locally normal linear functional is locally normal too.

The last half of this paper will be devoted to extending a result of Powers [11] for UHF algebra to a C^* -algebra \mathscr{N} with a proper sequential type I_{∞} funnel. Namely it will be shown that two locally normal representations π_1 and π_2 of the C^* -algebra \mathscr{N} generate isomorphic von Neumann algebras if and only if they are connected by an automorphism of \mathscr{N} . This is proven under the assumption that one of the generated von Neumann algebras is σ -finite.

2. The locally normal conjugate space of a C^* -algebra with a net of von Neumann algebras. Let \mathscr{A} be a C^* -algebra. Suppose a system $\mathfrak{F} = (\mathscr{A}_{\alpha})$ of C^* -subalgebras of \mathscr{A} indexed by a directed set $\{\alpha\}$ is given such that:

(i) \mathscr{M}_{α} is a von Neumann subalgebra of \mathscr{M}_{β} if $\alpha \leq \beta$;

(ii) $\bigcup_{\alpha} \mathscr{A}_{\alpha}$ is dense in \mathscr{A} with respect to the norm topology. The system $\mathfrak{F} = \{\mathscr{A}_{\alpha}\}$ is called a *net* (in \mathscr{A}) of von Neumann algebras and each \mathscr{A}_{α} is called *local subalgebra* of \mathscr{A}

DEFINITION 1. A continuous linear functional φ (resp. representation π) of \mathscr{A} is said to be *locally normal* if φ (resp. π) is σ -weakly continuous on each local subalgebra \mathscr{A}_{α} .