ON SATURATED FORMATIONS OF SOLVABLE LIE ALGEBRAS

ERNEST L. STITZINGER

The concepts of formations, \mathscr{F} -projectors and \mathscr{F} normalizers have all been developed for solvable Lie algebras. In this note, for each saturated formation \mathscr{F} of solvable Lie algebras, the class $\mathscr{T}(\mathscr{F})$ of solvable Lie algebras Lin which each \mathscr{F} -normalizer of L is an \mathscr{F} -projector is considered. This is the natural generalization of the Lie algebra analogue to SC groups which were first investigated by R. Carter. It is shown that $\mathscr{T}(\mathscr{F})$ is a formation. Then some properties of \mathscr{F} -normalizers of $L \in \mathscr{T}(\mathscr{F})$ are considered.

All Lie algebras considered here are solvable and finite dimensional over a field F. \mathscr{F} will always denote a saturated formation of solvable Lie algebras and L will be a solvable Lie algebra. N(L) is the nil-radical of L and $\mathcal{O}(L)$ is the Frattini subalgebra of L. For definitions and properties of all these concepts see [3], [4], and [9]. For SC groups see [6].

We begin with a general lemma.

LEMMA 1. Let N be an ideal of L and D/N be an \mathscr{F} -normalizer of L/N. Then there exists an \mathscr{F} -normalizer E of L such that E + N = D.

Proof. Let L be a minimal counterexample and we may assume that N is a minimal ideal of L. If D/N = L/N, then any \mathscr{F} -normalizer of L has the desired property, hence we may suppose that $D/N \subset L/N$. Suppose first that N is \mathscr{F} -central in L. Let $N^*/N =$ N(L/N) and $C = C_L(N)$. Then $N(L) = N^* \cap C$. Let M/N be a maximal \mathscr{F} -critical subalgebra of L/N such that D/N is an \mathscr{F} normalizer of M/N. Now either M is \mathscr{F} -critical in L or M complements a chief factor of L between N^* and N(L). In the first case, by induction, there exists an \mathscr{F} -normalizer E of M such that E +N = D and E is also an \mathscr{F} -normalizer in L. In the second case, $L/C \in \mathscr{F}$ and $C + N^*/C$ is operator isomorphic to $N^*/N^* \cap C = N^*/$ N(L). Hence each chief factor of L between N^* and N(L) is \mathscr{F} central which contradicts M being \mathscr{F} -abnormal.

Now suppose that N is \mathscr{F} -eccentric and assume $N \subseteq \Phi(L)$. Let M/N be as in the above paragraph. Again, by induction, there exists an \mathscr{F} -normalizer E of M such that E + N = D. But $N \subseteq \Phi(L)$ yields that M is \mathscr{F} -critical in L using Theorem 2.5 of [4]. Hence E is an