GROUPS OF MATRICES ACTING ON DISTRIBUTION SPACES

S. R. HARASYMIV

Let E be a locally convex space of temperate distributions on the *n*-dimensional Euclidean space R^n , and G aclosed subgroup of Gl(n, R), the general linear group over R^n . An attempt is made to identify those distributions which can be approximated in E by linear combinations of distributions of the form u(Ax + b), where u is a fixed element of E, A varies over G, and b varies over R^n . A cancellation theorem is proved; this then allows the support of the Fourier transform of any annihilator of the set of distributions of the form u(Ax + b) to be localized. This in turn is used to obtain approximation results.

1. Notation. Throughout, R^n denotes *n*-dimensional Euclidean space. The character group of R^n is again R^n , the identification being made in such a way that multiplicative factors in the Fourier inversion formula are eliminated. The Haar measure on R^n is denoted by dx.

We denote by $C_c^{\infty}(U)$ the space of indefinitely differentiable functions on \mathbb{R}^n which have compact support inside the open set U in \mathbb{R}^n . $S(\mathbb{R}^n)$ is the space of rapidly decreasing indefinitely differentiable functions on \mathbb{R}^n . The space of all Schwartz distributions on \mathbb{R}^n is designated by $D'(\mathbb{R}^n)$, and its subspace consisting of temperate distributions is denoted by $S'(\mathbb{R}^n)$.

Gl(n, R) is the general linear group over R^n . The determinant of an element A in Gl(n, R) is written det A, and A' denotes the adjoint matrix of A.

Now, consider a fixed element A in Gl(n, R). Then it is easy to see that the function

$$x \longrightarrow \phi(Ax) \quad (x \in R^n)$$

belongs to $C_c^{\infty}(\mathbb{R}^n)$ whenever ϕ does. We write ϕ^A for this function. This definition is extended to include all distributions by making use of the adjoint of the map which carries ϕ onto ϕ^A . More precisely, if u is a distribution, then we define u^A to be the unique distribution which satisfies

$$\langle \phi, \, u^{\scriptscriptstyle A}
angle = |\det A^{\scriptscriptstyle -1}| \langle \phi^{\scriptscriptstyle A^{\scriptscriptstyle -1}}, \, u
angle \qquad (\phi \in C^\infty_{
m c}(R^n)) \; .$$

The translate of a distribution u by an element b in \mathbb{R}^n is defined in the usual fashion, and denoted by u_b . We write u_b^A for $(u_b)^A$.