GROUPS OF MATRICES ACTING ON DISTRIBUTION SPACES

S. R. Harasymiv

Abstract

Let E be a locally convex space of temperate distributions on the n-dimensional Euclidean space R^{n}, and G aclosed subgroup of Gl (n, R), the general linear group over R^{n}. An attempt is made to identify those distributions which can be approximated in E by linear combinations of distributions of the form $u(A x+b)$, where u is a fixed element of E, A varies over G, and b varies over R^{n}. A cancellation theorem is proved; this then allows the support of the Fourier transform of any annihilator of the set of distributions of the form $u(A x+b)$ to be localized. This in turn is used to obtain approximation results.

1. Notation. Throughout, R^{n} denotes n-dimensional Euclidean space. The character group of R^{n} is again R^{n}, the identification being made in such a way that multiplicative factors in the Fourier inversion formula are eliminated. The Haar measure on R^{n} is denoted by $d x$.

We denote by $C_{c}^{\infty}(U)$ the space of indefinitely differentiable functions on R^{n} which have compact support inside the open set U in R^{n}. $S\left(R^{n}\right)$ is the space of rapidly decreasing indefinitely differentiable functions on R^{n}. The space of all Schwartz distributions on R^{n} is designated by $D^{\prime}\left(R^{n}\right)$, and its subspace consisting of temperate distributions is denoted by $S^{\prime}\left(R^{n}\right)$.
$\mathrm{Gl}(n, R)$ is the general linear group over R^{n}. The determinant of an element A in $\mathrm{Gl}(n, R)$ is written $\operatorname{det} A$, and A^{\prime} denotes the adjoint matrix of A.

Now, consider a fixed element A in $\mathrm{Gl}(n, R)$. Then it is easy to see that the function

$$
x \longrightarrow \dot{\varphi}(A x) \quad\left(x \in R^{n}\right)
$$

belongs to $C_{c}^{\infty}\left(R^{n}\right)$ whenever ϕ does. We write ϕ^{A} for this function. This definition is extended to include all distributions by making use of the adjoint of the map which carries ϕ onto $\dot{\phi}^{A}$. More precisely, if u is a distribution, then we define u^{A} to be the unique distribution which satisfies

$$
\left\langle\dot{\varphi}, u^{A}\right\rangle=\left|\operatorname{det} A^{-1}\right|\left\langle\dot{\varphi}^{A-1}, u\right\rangle \quad\left(\phi \in C_{c}^{\infty}\left(R^{n}\right)\right) .
$$

The translate of a distribution u by an element b in R^{n} is defined in the usual fashion, and denoted by u_{b}. We write u_{b}^{A} for $\left(u_{b}\right)^{4}$.

