ON A THEOREM OF MURASUGI

C. McA. Gordon and R. A. Litherland

1. Let \(l = k_1 \cup k_2 \) be a 2-component link in \(S^3 \), with \(k_2 \) unknotted. The 2-fold cover of \(S^3 \) branched over \(k_2 \) is again \(S^3 \); let \(k_1^{(2)} \) be the inverse image of \(k_1 \), and suppose that \(k_1^{(2)} \) is connected. How are the signatures \(\sigma(k_1), \sigma(k_1^{(2)}) \) of the knots \(k_1 \) and \(k_1^{(2)} \) related? This question was considered (from a slightly different point of view) by Murasugi, who gave the following answer [Topology, 9 (1970), 283-298].

Theorem 1 (Murasugi).

Recall [4] that the invariant \(\xi(l) \) is defined by first orienting \(l \), giving, an oriented link \(l \), say, and then setting \(\xi(l) = \sigma(l) + \text{Lk}(k_1, k_2) \), where \(\sigma \) denotes signature and \(\text{Lk} \) linking number.

In the present note we shall give an alternative, more conceptual, proof of Theorem 1, and in fact obtain it as a special case of a considerably more general result.

The idea of our proof is the following. If \(l = l_1 \cup l_2 \) is a link, partitioned into two sublinks \(l_1 \) and \(l_2 \), then the 2-fold branched covers over \(l_1, l_2, \) and the whole of \(l \), are all quotients of a \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \)-cover branched over \(l \). After possibly multiplying by 2, the diagram consisting of these branched covers bounds a corresponding diagram of 4-manifolds, and the signatures of the various links involved are expressible in terms of the signatures of these 4-manifolds (and the euler numbers of the branch sets); see e.g., [3]. The result is then a consequence of a relation among these 4-manifold signatures (Lemma 1).

This more general setting requires that we consider links in 3-manifolds other than homology spheres; in §2 we discuss the signature in this context. (It becomes necessary to prescribe a particular 2-fold branched cover. However, we sacrifice some generality inasmuch as we restrict ourselves to oriented, null-homologous links: it would otherwise be necessary to prescribe a framing of the link as well.) In §3 we set up the diagram of covering spaces, and in §4 derive the relation between the signatures of the manifolds therein. Section 5 contains some consequences of this, including the appropriate generalization of Theorem 1.

All manifolds of dimensions 3 and 4 are to be oriented; manifolds of dimensions 1 and 2 are oriented only when this is explicitly