FOURIER MULTIPLIERS FOR $L_p(\mathbb{R}^n)$ VIA q–VARIATION

QUANHUA XU

We give a new sufficient condition for a function to be a Fourier multiplier of $L_p(\mathbb{R}^n)$ via its q-variation on dyadic rectangles. This solves a problem posed by Coifman, Rubio de Francia and Semmes, who had considered the one-dimensional case.

1. Introduction.

Let I be an interval of \mathbb{R}. For $1 \leq q < \infty$ we denote by $V_q(I)$ the space of all the complex-valued functions of bounded q-variation on I, that is, $V_q(I)$ consists of the functions m on I such that

$$\|m\|_{V_q(I)} = \sup \left(|m(x_0)|^q + \sum_{k \geq 0} |m(x_{k+1}) - m(x_k)|^q \right)^{1/q} < \infty,$$

where the supremum is taken over all increasing sequences $\{x_k\}_{k \geq 0}$ in I.

In [2], Coifman, Rubio de Francia and Semmes proved the following considerable improvement of the classical Marcinkiewicz multiplier theorem for $L_p(\mathbb{R})$.

Theorem A. Let $I_k = [2^k, 2^{k+1}]$ and $J_k = [-2^{k+1}, -2^k]$ for every $k \in \mathbb{Z}$. Let $m \in L_\infty(\mathbb{R})$. If $\sup_{k \in \mathbb{Z}} (\|m\|_{V_q(I_k)} + \|m\|_{V_q(J_k)}) < \infty$ for some $1 \leq q < \infty$, then m is a Fourier multiplier for $L_p(\mathbb{R})$ for every $1 < p < \infty$ satisfying $\left| \frac{1}{p} - \frac{1}{2} \right| < \frac{1}{q}$.

The ingredient of the proof of Theorem A in [2] is Rubio de Francia’s generalized Littlewood-Paley inequality for arbitrary families of disjoint intervals (cf. [7]). Let us emphasize that the above theorem is one-dimensional, while the classical Marcinkiewicz theorem holds as well in the multiple dimensional case. The problem of extending Theorem A to \mathbb{R}^n was left open in [2]. The purpose of this note is to solve it.

Let us define the space of functions of bounded q-variation on a rectangle of \mathbb{R}^n. We consider only rectangles with sides parallel to the axes, and also we restrict ourself to finite rectangles. Now let R be such a rectangle. Write $R = \prod_{k=1}^n [a_k, b_k]$. Let m be a function defined on R. Define Δ_R by

$$\Delta_R(m) = \Delta_{h_1}^{(1)} \Delta_{h_2}^{(2)} \cdots \Delta_{h_n}^{(n)} m(a_1, a_2, \cdots, a_n),$$