DEGREE-ONE MAPS ONTO LENS SPACES

Claude Hayat-Legrand, Shicheng Wang and Heiner Zieschang

Abstract

The paper deals with the question about the existence or non-existence of a degree-one map of a closed orientable 3manifold M to some lens space. The answer to this question is determined by the cyclic decomposition of $H_{1}(M)$, except when $H_{1}(M)$ contains an even number of direct factors isomorphic to $\mathrm{Z}_{2^{k}}$. In this case one has to calculate the linking matrix of M to get the answer. For every n even, we give a Seifert manifold M_{n} with $H_{1}\left(M_{n}\right) \cong \mathbf{Z}_{n} \oplus \mathbf{Z}_{n}$ that does not admit a degree-one map to $L(n, m)$ for any m.

1. Introduction.

Motivated by articles by Y. Rong [10] also Y. Rong and S. Wang [11], we consider the question whether a given 3-manifold M admits a degree-one map to a lens space $L(n, m)$ or not. For every n a geometric criterium is given (Theorem 2.2) by the linking pairing Tor $H_{1}(M) \otimes \operatorname{Tor} H_{1}(M) \rightarrow$ $\mathbf{Q} / \mathbf{Z},(\alpha, \beta) \mapsto \alpha \odot \beta$. Moreover it has the advantage of being quite simple and useful for the geometric construction of examples with a negative answer. Because it is a pairing on abelian group it is easy to prove (Theorem 2.10) that the answer to the question about the existence of a degree-one map to a $L(n, m)$ is determined by the cyclic decomposition of $H_{1}(M)$ except for the case where $n=2^{k} \bar{n}, k>0, \bar{n}$ odd and $H_{1}(M)$ contains an even number of direct factors isomorphic to $\mathbf{Z}_{2^{k}}$. In the end one has to calculate the linking pairing only in this case.

For the case $L(n, m)=L(2,1)=\mathbf{P}^{3}$ the often used method depends on the existence of a generator $\xi \in H^{1}\left(L(2,1), \mathbf{Z}_{2}\right)$ with the property $\xi \cup \xi \cup \xi \neq$ 0 . If n is odd or a multiple of 4 (see for example Remark 2.8 (c)) there is no element $\xi \in H^{1}\left(L(n, m), \mathbf{Z}_{n}\right)$ with $\xi^{3} \neq 0$, but there is a generator $\mu \in H_{1}(L(n, m))$ with linking number $\mu \odot \mu \neq 0[16,14.7 .3$ (c)]. This is the ingredient for Theorem 2.2. If there is a degree-one map $M \rightarrow L(n, m)$ then $H_{1}(M)$ has a direct factor isomorphic to \mathbf{Z}_{n}, see [2], [16, 14.2.6]. Exploring the geometric description of the linking number we construct for every even n a Seifert manifold M_{n} with $H_{1}\left(M_{n}\right)=\mathbf{Z}_{n} \oplus \mathbf{Z}_{n}$ such that there is no degreeone map from M_{n} to a lens space $L(n, m)$. If $n=2$ the Seifert manifold M_{2}

