DEGREE-ONE MAPS ONTO LENS SPACES

CLAUDE HAYAT-LEGRAND, SHICHENG WANG AND HEINER ZIESCHANG

The paper deals with the question about the existence or non-existence of a degree-one map of a closed orientable 3manifold M to some lens space. The answer to this question is determined by the cyclic decomposition of $H_1(M)$, except when $H_1(M)$ contains an even number of direct factors isomorphic to \mathbb{Z}_{2^k} . In this case one has to calculate the linking matrix of M to get the answer. For every n even, we give a Seifert manifold M_n with $H_1(M_n) \cong \mathbb{Z}_n \oplus \mathbb{Z}_n$ that does not admit a degree-one map to L(n,m) for any m.

1. Introduction.

Motivated by articles by Y. Rong [10] also Y. Rong and S. Wang [11], we consider the question whether a given 3-manifold M admits a degree-one map to a lens space L(n,m) or not. For every n a geometric criterium is given (Theorem 2.2) by the linking pairing $\text{Tor } H_1(M) \otimes \text{Tor } H_1(M) \rightarrow \mathbf{Q}/\mathbf{Z}, (\alpha, \beta) \mapsto \alpha \odot \beta$. Moreover it has the advantage of being quite simple and useful for the geometric construction of examples with a negative answer. Because it is a pairing on abelian group it is easy to prove (Theorem 2.10) that the answer to the question about the existence of a degree-one map to a L(n,m) is determined by the cyclic decomposition of $H_1(M)$ except for the case where $n = 2^k \bar{n}, \ k > 0, \ \bar{n}$ odd and $H_1(M)$ contains an even number of direct factors isomorphic to \mathbf{Z}_{2^k} . In the end one has to calculate the linking pairing only in this case.

For the case $L(n,m) = L(2,1) = \mathbf{P}^3$ the often used method depends on the existence of a generator $\xi \in H^1(L(2,1), \mathbf{Z}_2)$ with the property $\xi \cup \xi \cup \xi \neq 0$. If n is odd or a multiple of 4 (see for example Remark 2.8 (c)) there is no element $\xi \in H^1(L(n,m), \mathbf{Z}_n)$ with $\xi^3 \neq 0$, but there is a generator $\mu \in H_1(L(n,m))$ with linking number $\mu \odot \mu \neq 0$ [16, 14.7.3 (c)]. This is the ingredient for Theorem 2.2. If there is a degree-one map $M \to L(n,m)$ then $H_1(M)$ has a direct factor isomorphic to \mathbf{Z}_n , see [2], [16, 14.2.6]. Exploring the geometric description of the linking number we construct for every even n a Seifert manifold M_n with $H_1(M_n) = \mathbf{Z}_n \oplus \mathbf{Z}_n$ such that there is no degreeone map from M_n to a lens space L(n,m). If n = 2 the Seifert manifold M_2