Relations between Homotopy and Homology II

By Atuo Komatu

§ 1. Introduction

After the publication of my last paper, "Relations between homotopy and homology I" [1], I had an opportunity of reading H. Hopf's papers [2], [3]. In those papers I found that both his method and results were somewhat similar to mine. Let us compare the geometrical part, the grouptheoretical part being excluded. Hopf only thought of "Homotopie-ränder" and dealt with the subgroup Π_{0} defined by the notion of free homotopy, while I dealt with three homomorphisms, namely, homotopy boundary, homotopy relativisation and covering, as a part of the exact homomorphism sequence of homotopy groups. For the lack of the idea of free homotopy in my method, I could not deal with the low dimensional case. The difference of methods leads to different results. Taking Hopf's idea into consideration, we can see the difference between Hopf's group Θ^{n} and my "simple group" Θ^{n}, and its geometrical nature; moreover the homology theory of a complex will be found to be reduced, in a sense, completely into the homotopy theory.

§ 2. Hopf's free homotopy group

Let $\left\{\alpha_{i}\right\}$ be the generators of the q-dimensional homotopy group $\pi_{q}(R)$ of a locally contractible topological space R and $\left\{\xi_{j}\right\}$ be the generators of the fundamental group $\pi_{1}(R)$. The Whitehead's product $\xi_{j} \cdot \alpha_{i}$ is also an element of $\pi_{q}(R)$. We denote by Γ_{q} the normal subgroup generated by all the elements $\left\{\xi_{j} \cdot \alpha_{i}\right\}$. The free homotopy group $\tilde{\pi}_{q}(R)$ is defined as the factor group $\pi_{q}(R) / \Gamma_{q}(R)$, i. e. if we add new defining relations $\left\{\xi_{j} \cdot \alpha_{i}=1\right\}$ to the relations of π_{q}, then we get the group $\tilde{\pi}_{q}$. We denote by u the natural homomorphism from π_{q} to $\widetilde{\pi}_{q}$. It is easily seen from the definition that for any elements $\alpha \in \pi_{q}, \xi \in \pi_{1}$, $\xi \cdot \alpha=1$ in $\widetilde{\pi}_{q}$. If R is q-simple in the sense of Eilenberg [4], then it is clearly $\pi_{q}=\widetilde{\pi}_{q}$.

Sometimes we take a relative operator domain $\pi_{1}(L)$, where L is a closed connected subset of R. Replacing $\pi_{1}(R)$ with $\pi_{1}(L)$ we get a

