A Characterization of the Uniform Topology of a Uniform Space by the Lattice of its Uniformity.

By Jun-iti NAGATA

We shall denote in this paper by R a uniform space, and by $\{\mathfrak{M}_x | \mathfrak{X}\}$ its uniformity.¹⁾ We denote by $\mathfrak{M}_x < \mathfrak{M}_y$ the fact that \mathfrak{M}_x is a refinement of \mathfrak{M}_y and by $\mathfrak{M}_x \land \mathfrak{M}_y$ the fact that $\mathfrak{M}_x^{\land} < \mathfrak{M}_y$. $\{\mathfrak{M}_x | \mathfrak{X}\}$ is a lattice by the order <, and has also the relation \land .

We shall show in this paper that in general a lattice-isomorphism between uniformities of two uniform spaces preserving the relations \triangle and < implies a uniform homeomorphism between the uniform spaces, and especially that when R has no isolated point, the structure of the lattice $\{\mathfrak{M}_x | \mathfrak{X}\}$ or of \mathfrak{X} defines R up to a uniform homeomorphism.

An element of $\{\mathfrak{M}_x \mid \mathfrak{X}\}\$, which is an open covering of R, is called simply a *u*-covering in this paper. German capitals are used for *u*-coverings but in 6 of the proof of Lemma 3.

Definition. Let \mathfrak{M} , \mathfrak{N} be two u-coverings. We denote by $\mathfrak{M} \not\ll \mathfrak{N}$ the fact that for every $M \in \mathfrak{M}$ there exists some $M' \in \mathfrak{M}$ such that $M \subset M'$ and $M' \not\subset N$ for all $N \in \mathfrak{N}$.

We denote by $\overline{\ll}$ the negation of \ll .

Lemma 1. In order that $\mathfrak{M} \not\ll \mathfrak{N}$ holds, it is necessary and sufficient that

(1) \mathfrak{M}^{Δ} contains no set consisting of one point,

(2) whenever $\mathfrak{M} \ll \mathfrak{P}$, $\mathfrak{M} \ll \mathfrak{P} \smile \mathfrak{N}$ holds.²⁾

Proof. Necessity: The condition (1) is obvious from the definition of \ll .

From $\mathfrak{M} \ll \mathfrak{P}$ we get $M \in \mathfrak{M}$ such that $M \oplus P$ for all $P \in \mathfrak{P}$. Since $\mathfrak{M} \ll \mathfrak{N}$, there exists $M' \in \mathfrak{M}$ such that $M' \supset M$, $M' \oplus N$ for all $N \in \mathfrak{N}$.

¹⁾ Cf. J. W. Tukey, Convergence and uniformity in topology, (1940).

²⁾ \Leftrightarrow denotes the negation of <.