On the Uniform Topology of Bicompactifications.

By Jun-iti NAGATA.

In this note we shall characterise the uniform space, which is a uniform subspace of its bicompactification $\beta(R)$ or $w(R)^{(1)}$, by introducing the notion of u-normality. Then we shall study some properties of u-normal spaces. We denote by R a uniform space having uniformity $\{\mathfrak{M}_x \mid \mathfrak{X}\}$.

Let A and B be subsets of R and $A \cap B = \phi$. When there exists $\mathfrak{M}_x \in \{\mathfrak{M}_x\}$ such that $S(A, \mathfrak{M}_x) \cap B = \phi$, we say that A and B are *u*-separated. It is easy to see that A and B are *u*-separated, when and only when there exists a uniformly continuous function φ such that

$$\varphi(a) = 0 \ (a \in A)$$
,
 $0 \leq \varphi(a) \leq 1.$
 $\varphi(a) = 1 \ (a \in B)$,

A uniform space R is called a *Čech u-normal space*, when any disjoint completely closed sets²⁾ of R are u-separated, and is called a *u-normal space*, when any disjoint closed sets of R are u-separated.

Lemma 1. In order that R is Čech u-normal, it is necessary and sufficient that every bounded continuous functions of R are uniformly continuous.

Proof. Since for any disjoint completely closed sets F and G, there exists a bounded continuous function φ such that

 $\varphi\left(a\right) = 0 \ \left(a \in F\right)$,

 $0 \leq \varphi(a) \leq 1.$

 $\varphi\left(a\right)=1\ \left(a\in G\right)$,

the sufficiency of the condition is obvious.

Conversely let R be Čech u-normal, then any finite open covering $\mathfrak{N} = \{N_i \mid i = 1, ..., n\}$ is an element of $\{\mathfrak{M}_x\}$, if every N_i^c are completely closed.³⁾

For put $N_i^c = F_i$, then $\bigcap_{i=1}^n F_i = \phi$ or $F_1 \frown (F_2 \frown \cdots \frown F_n) = \phi$, where F_1 and $F_2 \frown \cdots \frown F_n$ are completely closed. Hence there exists