Journal of Mathematics, Osaka City University Vol. 14, No. 1.

STRUCTURE OF HEREDITARY ORDERS OVER LOCAL RINGS

Manabu HARADA

(Received April 15, 1963)

Let R be a noetherian integral domain and K its quotient field, and Σ a semi-simple K-algebra with finite degree over K. If Λ is a subring in Σ which is finitely generated R-module and $\Lambda K = \Sigma$, then we call it an order. If Λ is a hereditary ring, we call it a hereditary order (briefly *h*-order).

This order was defined in [1], and the author has substantially studied properties of *h*-orders in [5], and shown that we may restrict ourselves to the case where R is a Dedekind domain, and Σ is a central simple *K*-algebra.

In this note, we shall obtain further results when R is a discrete rank one valuation ring. Let R be such a ring, and Ω a maximal order with radical \mathfrak{N} , and $\Omega/\mathfrak{N} = \Delta_n; \Delta$ division ring. Then we shall show the following results: 1) Every *h*-order contains minimal *h*-orders Λ such that $\Lambda/N(\Lambda) \approx \Sigma \oplus \Delta$, where $N(\Lambda)$ is the radical of Λ , (Section 3); 2) The length of maximal chains for *h*-order is equal to *n*, and we can decide all chains which pass a given *h*-order, (Section 5); 3) For two *h*-orders Γ_1 and Γ_2 they are isomorphic if and only if they are of same form, (see definition in Section 4); 4) The number of *h*-orders in a nonminimal *h*-order is finite if and only if R/\mathfrak{P} is a finite field, where \mathfrak{P} is a maximal ideal in R, (Section 6).

In order to obtain those results we shall use a fundamental property of maximal two-sided ideals in Λ ; { \mathfrak{M} , $\mathfrak{N}^{-1}\mathfrak{M}\mathfrak{N}$, $\mathfrak{N}^{-2}\mathfrak{M}\mathfrak{N}^2$, ..., $\mathfrak{N}^{-r+1}\mathfrak{M}\mathfrak{N}^{r-1}$ } gives a complete set of maximal two-sided ideals in Λ , where $\mathfrak{N} = N(\Lambda)$, (Section 2).

H. Higikata has also determined h-orders over local ring in [8] by direct computation and the author owes his suggestions to rewrite this paper, (Section 6). However, in this note we shall decide h-orders as a ring, namely by making use of properties of idempotent ideals and radical.

We only consider *h*-orders over local ring in this paper, except Section 1, and problems in the global case will be discussed in [7] and in a