Decomposition of radical elements of a commutative residuated lattice

By Kentaro Murata

(Received Nov. 8, 1958)

1. Recently E. Schenkman [4] has pointed out the similarlity between the properties of ideals in a commutative ring and of normal subgroups of a group. In particular he obtained that every radical¹⁾ A of a group G such that G/A has finite principal series has a unique minimal decomposition as an intersection of primes²⁾.

In the present note we shall define a radicial element of a commutative residuated cm-lattice³⁾ L, and obtain a decomposition theorem for radical elements of L, which is a lattice-formulaltion of the above result and of the minimal decomposition theorem⁴⁾ of radical ideals in (commutative) Noetherian rings.

2. Let L be a commutative residuated cm-lattice with a greatest element e, and suppose that $ab \le a$ for any two elements a and b of L^5 .

For example, the lattice of all normal subgroups of any group forms a commutative residuated *cm*-lattice with above properties, if we define a multiplication $A \cdot B$ of normal subgroups A and B as the subgroup generated by all commutators $xyx^{-1}y^{-1}$ ($x \in A$, $y \in B$)⁶.

For any element a of L, we define inductively $a^{(1)}=a$, $a^{(\rho)}=a^{(\rho-1)} \cdot a^{(\rho-1)}$ for $\rho > 1^{7}$). Then we have

- (1) $a \le b$ implies $a^{(\rho)} \le b^{(\rho)}$,
- (2) $\rho \leq \sigma$ implies $a^{(\rho)} \geq a^{(\sigma)}$,
- (3) $(a \cap b)^{(\rho)} \leq a^{(\rho)} \cap b^{(\rho)}$,
- $(4) \quad (a \cdot a)^{(\rho)} = a^{(\rho)} \cdot a^{(\rho)},$
- (5) $a^{(\rho)(\sigma)} = a^{(\sigma)(\rho)}$
- (6) $a^{(\rho\sigma)} \leq a^{(\rho)(\sigma)}$,
- (7) $(a \cup b)^{(\rho\sigma)} < a^{(\rho)} \cup b^{(\sigma)}$.
- $(1), \dots, (4)$ are immediate by induction on the whole number ρ .

^{1), 2)} Cf. [4, p. 376].

³⁾ Cf. [1, p. 201]. The associative law for multiplication is not assumed.

⁴⁾ Cf. [2, p. 202, Theorem 70].

⁵⁾ The greatest element e is not necessarily a unity of L. If e is a unity then $ab \le a$ for any two elements a and b of L.

⁶⁾ Cf. [1, p. 204].

⁷⁾ No confusion arises, even if we write $a^{\rho} = a^{(\rho)}$ for $\rho = 1, 2$.