Meromorphic approximations on Riemann surfaces

By Kanenji Sakakihara
(Received Feb. 1, 1954)

Let D, D^{\prime} be compact domains of a Riemann surface R relative to R such that $\bar{D} \subset D^{\prime}$ and D be enclosed by a finite number of closed Jordan curves. Let P be a finite point set contained in D, Q^{\prime} be a selected set of the collection of compact components of $D^{\prime}-\bar{D}$ relative to D^{\prime}, that is, any point of Q^{\prime} is contained in one and only one element of the collection and conversely any element of the collection contains one and only one point of Q^{\prime}, and Q be a selected set of the collection of compact components of $R-\bar{D}$ relative to R. Obviously both Q^{\prime} and Q are finite point sets. Then we have the following theorems:

Theorem 1'. There exists such a function as is meromorphic in D^{\prime} and has its poles on P.

Theorem 2'. Any function which is regular in a certain domain containing \bar{D} is uniformly approximated on \bar{D} by such a function as is meromorphic on D^{\prime} and has its poles on Q^{\prime}.

Theorem 3'. Any functon which is meromorphic in a certain domain containing \bar{D} and has its poles on P is uniformly approximated on \bar{D} by such a function as is meromorphic in D^{\prime} and has its poles on $P \cup Q^{\prime}$.

Theorem 1. There exists such a function as is meromorphic in R and has its poles on P.

Theorem 2. Any function which is regular in a certain domain contiaining \bar{D} is uniformly approximated on \bar{D} by such a function as is meromorphic in R and has its poles on Q.

Theorem 3. Any function which is meromorphic in a certain domain containing \bar{D} and has its poles on P is uniformly approximated on \bar{D} by such a function as is meromorphic in R and has its poles on $P \cup Q$.

According to the method of Behenke and Stein ${ }^{11}$, these theorems are easily derived by the following process ${ }^{2}$:

1) Behnke und Stein: Entwicklung analytischer Funktionen auf Riemannschen Flächen, Math. Ann. 120 (1948), pp. 430-461.
2) Theorem 1^{\prime} is trivial. Theorem 2^{\prime} is a modified one of a theorem in the above paper in which D is simply connected relative to D^{\prime}.
