Note on Chain Conditions in Free Groups

By Mutuo Takahasi

§ 1. The purpose of this paper is to see what types of chain conditions hold in free groups.

In a previous paper¹⁾ the author proved that the maximum condition holds on such subgroups of a free group F that are all generated by a finite number r of elements, for any prescribed natural number r. That is, if

$$H_1 \subseteq H_2 \subseteq \dots \quad \subseteq H_n \subseteq \dots$$

is a sequence of subgroups in a free group F and every H_n is generated by r elements, then the sequence is finite. This fact was proved also by H. Higman independently.²⁾

Of course, in a free group the minimum condition on subgroups of the same type does not hold in general. But we can prove that a type of *restricted minimum condition* holds (Theorem 3). This can be proved as an immediate consequence of a theorem (Theorem 2) which is useful in some researches for sequences of subgroups in a free group.

The results obtained by M. Hall in his recent paper³, on descending sequences of subgroups in a free group, are slightly generalized in ours (Theorem 4), and this generalization enables us to prove the result of F. Levi¹ too, from which the Hall's results can be derived immediately.

§ 2. Let F be a free group with a set $X = \{x_i\}$ of free generators. Any element f of F is uniquely expressible in its normal form $x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \dots x_{i_{\lambda}}^{\varepsilon_{\lambda}}$, where the x_i are elements out of X, $\varepsilon = \pm 1$, and two relations

$$x_i = x_{i_{\nu+1}}$$
 and $\varepsilon_{\nu} + \varepsilon_{\nu+1} = 0$

do not hold simultaneously for any $\nu = 1, 2, ..., \lambda - 1$. The number $\lambda = \lambda(f)$ is called the *length* of f. The cardinal number of X is called the *rank* of F. The rank is determined uniquely by the group F, not depending on the choice of its set of free generators.

¹⁾ M. Takahasi : Note on locally free groups, Journ. of the Inst. of Folytechnics, Osaka City Univ. 1 (1950), 65-70.

²⁾ H. Higman: A finitely related group with an isomorphic factor group, Journ. London Math. Soc. 26 (1951), 59-61.

³⁾ M. Hall: A Topology for free groups and related groups, Ann. of Math. 52 (1950), 127-139.

⁴⁾ F. Levi ; Über die Untergruppen der freien Gruppen, Math. Zeitschr. 37 (1933), 90-97.